Skip to main content
Log in

Investigation on Probabilistic Model for Corrosion Failure Level of Buried Pipelines in Kirtipur Urban Areas (Nepal)

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Potable water supplies mostly through buried galvanized steel and cast-iron pipes from distribution terminals to the public, and a lot of corrosion failures occurred each year in urban cities of Nepal. It is an urgent need to know the main responsible factors for such buried metallic pipeline failures and subsequently evaluate the level of corrosion risk in soils of presently studied Kirtipur urban areas. Six factors (i.e., pH, moisture, resistivity, oxidation–reduction potential-ORP, chloride, and sulfate ions) of fifty-three soil samples were determined using American Standard for Testing and Materials (ASTM) standard. It estimates 6.4–7.9 pH, 7–45% moisture, 4.5 × 103–45.5 × 103 Ohm.cm resistivity, 317–514 mV ORP, 12–86 ppm chloride, and 40–294 ppm sulfate ions in the samples, indicating the soils of the Kirtipur urban areas could classify mostly into mildly corrosive and less corrosive groups to the buried galvanized steel and cast-iron pipes. Furthermore, a new probabilistic corrosion failure model is proposed for the study of the soil corrosivity level more precisely based on sub-corrosion groups by considering the experimental data of six soil factors. Present findings would be insightful for corrosion mapping of soil lands to study the underground pipeline works in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control; An Introduction to Corrosion Science and Engineering, 4th edn. (Wiley, New Jersey, USA, 2008), p. 444

    Google Scholar 

  2. R.E. Ricker, Analysis of pipeline steel corrosion data from NBS (NIST) studies conducted between1922–1940 and relevance to pipeline management. J. Res. Natl. Bur. Stand. 115(5), 373–392 (2010). https://doi.org/10.6028/jres.115.026

    Article  Google Scholar 

  3. S. Folkman, Water Main Break Rates in the USA and Canada: A Comprehensive Study. Mechanical and Aerospace Engineering Faculty Publications, Paper No. 174, (Utah State University, USA, 2018), p. 47. https://digitalcommons.usu.edu/mae_facpub/174

  4. Y. Hou, D. Lei, S. Li, W. Yang, C. Li, Experimental investigation in corrosion effect on mechanical properties of buried metal pipes. Int. J. Corros. 2016, 72 (ID: 58008372) (2016). https://doi.org/10.1155/2016/5808372

  5. J.M. Makar, Preliminary analysis of failures in grey cast iron water pipes. Eng. Fail. Anal. 7(1), 43–53 (2000). https://doi.org/10.1016/S1350-6307(99)00005-9

    Article  CAS  Google Scholar 

  6. T. Wu, J. Xu, C. Sun, M. Yan, C. Yu, W. Ke, Microbiological corrosion of pipeline steel under yield stress in soil environment. Corros. Sci. 88, 291–305 (2014). https://doi.org/10.1016/j.corsci.2014.07.046

    Article  CAS  Google Scholar 

  7. M. Mehanna, R. Basseguy, M.L. Délia, A. Bergel, Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels. Corros. Sci. 51(11), 2596–2604 (2009). https://doi.org/10.1016/j.corsci.2009.06.041

    Article  CAS  Google Scholar 

  8. C.I. Ossai, B. Boswell, I.J. Davies, Pipeline failures in corrosive environments: a conceptual analysis of trends and effects. Eng. Fail. Anal. 53, 36–58 (2015). https://doi.org/10.1016/j.engfailanal.2015.03.004

    Article  Google Scholar 

  9. N. Hekmati, M.M. Rahman, N. Gorjian, R. Rameezdeen, C.W.K. Chow, Relationship between environmental factors and water pipe failure: an open access data study. SN Appl. Sci. 2(10), 1806 (2020). https://doi.org/10.1007/s42452-020-03581-6

    Article  Google Scholar 

  10. L. de Arriba-Rodriguez, J. Villanueva-Balsera, F. Ortega-Fernandez, F.O. Rodriguez-Perez, Methods to evaluate corrosion in buried steel structures: a review. Metals. 8, 334 (2018). https://doi.org/10.3390/met8050334

    Article  CAS  Google Scholar 

  11. M. Taghipour, G.R. Lashkaripour, M. Ghafoori, N. Hafezimoghaddas, Evaluating the soil corrosion of Bushehr, Iran, based on a new classification system for corrosive soils. Anti-Corros. Methods Mater. 63(5), 347–354 (2016). https://doi.org/10.1108/ACMM-01-2015-1489

    Article  Google Scholar 

  12. R.W. Bonds, L.M. Barnard, A.M. Horton, G.L. Oliver, Corrosion and corrosion control of iron pipe: 75 years of research. AWWA J. 97(6), 88–98 (2005). https://doi.org/10.1002/j.1551-8833.2005.tb10915.x

    Article  CAS  Google Scholar 

  13. H. Su, S. Mi, X. Peng, Y. Han, The mutual influence between corrosion and the surrounding soil microbial communities of buried petroleum pipelines. RSC Adv. 9, 18930–18940 (2019). https://doi.org/10.1039/c9ra03386f

    Article  CAS  Google Scholar 

  14. S.R. Ahmed Saupi, N.A.H. Abdul Haris, M.N. Masri, M.A. Sulaiman, B. Abu Bakar, M.H. Mohamad Amini, M. Mohamed, N.A.A. Nik Yusuf, Effects of soil physical properties to the corrosion of underground pipelines. Mater. Sci. Forum 840, 309–314 (2016). https://doi.org/10.4028/www.scientific.net/MSF.840.309

  15. R.F.C. Pereira, E.S.D. Oliveira, M.A.G.A. Lima, S.L.D.C. Brasil, Corrosion of galvanized steel under different soil moisture contents. Mat. Res. 18(3), 563–568 (2015). https://doi.org/10.1590/1516-1439.341714

    Article  CAS  Google Scholar 

  16. O. Oudbashi, A methodological approach to estimate soil corrosivity for archaeological copper alloy artifacts. Herit. Sci. 6, 2 (2018). https://doi.org/10.1186/s40494-018-0167-4

    Article  CAS  Google Scholar 

  17. J. Bhattarai, Frontiers of Corrosion Science, 1st edn. (Kshitiz Publication, Kathmandu, Nepal, 2010), p. 304

    Google Scholar 

  18. J.C. Velazquez, F. Caleyo, A. Valor, J.H. Hallen, Predictive model for pitting corrosion in buried oil and gas pipelines. Corrosion. 65(5), 332–342 (2009). https://doi.org/10.5006/1.3319138

    Article  CAS  Google Scholar 

  19. Y. Katano, K. Miyata, H. Shimizu, T. Isogai, Predictive model for pit growth on underground pipes. Corrosion. 59(2), 155–161 (2003). https://doi.org/10.5006/1.3277545

    Article  CAS  Google Scholar 

  20. H.W. Liu, Y. Dai, Y.F. Cheng, Corrosion of underground pipelines in clay soil with varied soil layer thicknesses and aerations. Arab. J. Chem. 13(2), 3601–3614 (2020). https://doi.org/10.1016/j.arabjc.2019.11.006

    Article  CAS  Google Scholar 

  21. J. Bhattarai, D. Paudyal, K.P. Dahal, Study on the Soil Corrosivity towards the Buried-metallic Pipes in Kathmandu and Chitwan Valley of Nepal. Proceedings of the 17th Asian-Pacific Corrosion Control Conference, 27-30 January 2016, Paper No. 17039 (IIT Bombay, Mumbai, India, 2016), pp. 1–12. https://www.researchgate.net/publication/293178472 (Accessed September 2, 2020).

  22. P.P. Bhandari, K.P. Dahal, J. Bhattarai, The corrosivity of soil collected from Araniko Highway and Sanothimi areas of Bhaktapur. J. Inst. Sci. Technol. 18(1), 71–77 (2013). https://www.researchgate.net/publication/311560647 (Accessed September 10, 2020).

  23. M. Norin, T.G. Vinka, Corrosion of carbon steel in an urban environment. Mater. Corros. 54(9), 641–651 (2003). https://doi.org/10.1002/maco.200303680

    Article  CAS  Google Scholar 

  24. S.A. Bradford, Practical Handbook of Corrosion Control in Soils; Pipelines, Tanks, Casings, Cables, Casti Corrosion Series. (Casti Publishing Ltd., Edmonton, Canada, 2000)

    Google Scholar 

  25. D.M. Parks, Corrosion Guidelines Version 1.0, (Corrosion Technology Branch, Materials Engineering and Testing Services, California Department of Transportation, Sacramento, USA, 2003), p. 47. https://rosap.ntl.bts.gov/view/dot/27509/dot_27509_DS1.pdf? (Accessed January 28, 2020).

  26. American National Standard for Ductile-iron Pipe, Centrifugally Cast, for Water or other Liquids, ANSI/AWWA C151/A21.5, Catalog No. 43151, (American National Standards Institute/American Water Works Association, Denver, USA, 2002).

  27. American National Standard for Polyethylene Encasement for Ductile-iron Pipe Systems, ANSI/AWWA C105/A21.5, Catalog No. 43105, (American National Standards Institute/American Water Works Association, Denver, USA, 1999).

  28. Standard Test Method for Measurement of Soil Resistivity Using the Two-electrode Soil Box Method, ASTM G187-18, Annual Book of ASTM Standards, Vol. 03.02, (ASTM International, West Conshohocken, PA, USA, 2018).

  29. Pipeline External Corrosion Direct Assessment Methodology, NACE RP0502-2002 (Houston, Texas, USA, NACE International, 2002), p. 62

    Google Scholar 

  30. J. Palmer, Environmental Characteristics Controlling the Soil Corrosion of Ferrous Piping, Effects of Soil Characteristics on Corrosion, V. Chaker and J. Palmer, (Ed.), (ASTM International, West Conshohocken, PA, USA, 1989) pp. 5−16.https://doi.org/10.1520/STP19706S

  31. G. Doyle, M.V. Seica, M.W.F. Grabinsky, The role of soil in the external corrosion of cast iron water mains in Toronto, Canada. Can. Geotech. J. 40(2), 225−236 (2003). https://doi.org/10.1139/t02-106

    Article  Google Scholar 

  32. R.E. Melchers, R.B. Petersen, T. Wells, Empirical models for long-term localized corrosion of cast iron pipes buried in soils. Corros. Eng. Sci. Technol. 54(2), 1–10 (2019). https://doi.org/10.1080/1478422X.2019.1658427

    Article  Google Scholar 

  33. K.P. Dahal, R.K. Karki, J. Bhattarai, Evaluation of corrosivity of soil collected from central part of Kathmandu Metropolis (Nepal) to water supply metallic pipes. Asian J. Chem. 30(7), 1525–1530 (2018). https://doi.org/10.14233/ajchem.2018.21211

  34. S.K. Regmi, K.P. Dahal, J. Bhattarai, Soil corrosivity to the buried-pipes used in Lalitpur, Kathmandu Valley. Nepal. Nepal J. Environ. Sci. 3(1), 15–20 (2015). https://doi.org/10.3126/njes.v3i0.22730

    Article  Google Scholar 

  35. J. Bhattarai, Study on the corrosive nature of soil towards the buried structures. Sci. World. 11(11), 43–47 (2013). https://doi.org/10.3126/sw.v11i11.8551

    Article  CAS  Google Scholar 

  36. Control of External Corrosion on Underground or Submerged Metallic Piping Systems, NACE SP0169, (NACE International, Houston, Texas, USA, 2013), p. 60.

  37. J. Palmer, Field soil corrosivity testing- engineering considerations, corrosion testing and evaluation: silver anniversary volume, R. Baboian, and S. Dean (Ed.), (ASTM International, West Conshohocken, USA, 1990) pp. 125−138.https://doi.org/10.1520/STP39185S

  38. E. Escalante, Concepts of Underground Corrosion, Effect of Soil Characteristics on Corrosion, V. Chaker, and J. Palmer, Ed., (ASTM International, West Conshohocken, PA, USA, 1989,) pp. 81–94. https://doi.org/10.1520/STP19710S

  39. S.A. Ganiyu, O.T. Olurin, K.A. Ajibodu, B.S. Badmus, A.O. Ajayi, Assessment of the degree of external corrosion of buried water pipelines and source identification of heavy metals due to surrounding soil conditions in humid environment. Environ. Earth Sci. 77, 443–460 (2018). https://doi.org/10.1007/s12665-018-7611-3

    Article  CAS  Google Scholar 

  40. H.W. Liu, G. Meng, W. Li, T. Gu, H. Liu, Microbiologically influenced corrosion of carbon steel beneath a deposit in CO2-saturated formation water containing Desulfotomaculum nigrificans. Front. Microbiol. 10, 1298 (2019). https://doi.org/10.3389/fmicb.2019.01298

    Article  Google Scholar 

  41. K.P. Dahal, D. KC, J. Bhattarai, Study on the soil corrosivity towards the buried water supply pipelines in Madhyapur Thimi Municipality; Bhaktapur. Bibechana 11, 94–102 (2014). https://doi.org/10.3126/bibechana.v11i0.10387

    Article  Google Scholar 

  42. Y.R. Dhakal, K.P. Dahal, J. Bhattarai, Investigation on the soil corrosivity towards the buried water supply pipelines in Kamerotar town planning areas of Bhaktapur. Nepal. Bibechana. 10, 82–91 (2014). https://doi.org/10.3126/bibechana.v10i0.8454

    Article  Google Scholar 

  43. K.P. Dahal, J. Bhattarai, Study on the Soil Corrosivity towards the Underground Pipes in Sinamangal-Baneshwor-Maitidevi-Bagbazar Roadway Areas of Kathmandu, Nepal. Proceedings of CORCON 2016, 18-21 September, 2016, Paper No. PP-11, (Publication of NIGIS/NACE, New Delhi, India, 2016), pp. 1–8. https://www.researchgate.net/publication/308605923 (Accessed 02 July 2020).

  44. M. Najafi, Trenchless Technology Piping: Installation and Inspection (WEF Press/ ASCE Press/The McGraw-Hill Companies, Inc., Alexandria, Virginia, 2010), pp. 153-182. https://silo.pub/trenchless-technology-piping-installation-and-inspection.html (Accessed 29 January 2020).

  45. Standard Test Method for Determination of Water (Moisture) Content of Soil by Direct Heating, ASTM D4959-16, Annual Book of ASTM Standards, Vol. 04.08, (ASTM International, West Conshohocken, PA, USA, 2016). https://doi.org/10.1520/D4959-16

  46. Standard Test Method for Measuring pH of Soil for Use in Corrosion Testing, ASTM G51-18, Annual Book of ASTM Standards, Vol. 03.02, (ASTM International, West Conshohocken, USA, 2018). https://doi.org/10.1520/G0051-18

  47. Standard Test Method for Measurement of oxidation-reduction Potential (ORP) of Soil, ASTM G200-09, Annual Book of ASTM Standards, Vol. 03.02, (ASTM International, West Conshohocken, USA, 2014). https://doi.org/10.1520/G0200-09R14

  48. Standard Method of Test for Determining Water-soluble Chloride Ion Content in Soil, AASHTO T 291-94, (American Association of State Highway and Transportation Officials, Washington, D.C., USA, 2018).

  49. Standard Method of Test for Determining Water-soluble Sulfate Ion Content in Soil, AASHTO T 290-95, (American Association of State Highway and Transportation Officials, Washington, D.C, USA, 2016).

  50. USDA, Soil Quality Indicators: pH, (The US Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA, 1998). https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052208.pdf (Accessed July 2, 2020).

  51. J. Jun, K.A. Unocic, M.V. Petrova, S.A. Shipilov, T. Carvalhaes, G. Thakur, J. Piburn, B.A. Pint, Methodologies for Evaluation of Corrosion Protection for Ductile Iron Pipe. ORNL/TM-2017/144, (Oak Ridge National Laboratory, Oak Ridge, USA, 2019), pp. 1-73. https://www.researchgate.net/publication/337844496

  52. R.L. Starkey, K.M. Wight, Anaerobic corrosion of iron in soil. Corrosion. 3(5), 227–232 (1947). https://doi.org/10.5006/0010-9312-3.5.227

    Article  Google Scholar 

  53. D.A. Jones, Principles and Prevention of Corrosion, 2nd ed., (Prentice-Hall, 1996).

  54. R. Hendi, H. Saifi, K. Belmokre, M. Ouadah, B. Smili, B. Talhi, Effect of black clay soil moisture on the electrochemical behavior of API X70 pipeline steel. Mater. Res. Express. 5(3), 036523 (2018). https://doi.org/10.1088/2053-1591/aab40e

    Article  CAS  Google Scholar 

  55. M. Wasim, S. Shoaib, N.M. Mubarak, Inamuddin, A.M. Asisi, Factors influencing corrosion of metal pipes in soils. Environ. Chem. Lett. 16, 861–879 (2018). https://doi.org/10.1007/s10311-018-0731-x

    Article  CAS  Google Scholar 

  56. I. Cole, D. Marney, The science of pipe corrosion: a review of the literature on the corrosion of ferrous metals in soils. Corros. Sci. 56, 5–16 (2012). https://doi.org/10.1016/j.corsci.2011.12.001

    Article  CAS  Google Scholar 

  57. R. Kodym, D. Snita, V. Fila, K. Bouzek, M. Kouril, Investigation of processes occurring at cathodically protected underground installations: experimental study of pH alteration and mathematical modeling of oxygen transport in soil. Corros. Sci. 120, 14–27 (2017). https://doi.org/10.1016/j.corsci.2016.12.003

    Article  CAS  Google Scholar 

  58. Z.S. Asadi, R.E. Melchers, Long-term external pitting and corrosion of buried cast iron water pipes. Corros. Eng. Sci. Technol. 53(2), 93–101 (2017). https://doi.org/10.1080/1478422X.2017.1400291

    Article  Google Scholar 

  59. R. Akkouche, C. Rémazeilles, M. Jeannin, M. Barbalat, R. Sabot, Ph. Refait, Influence of soil moisture on the corrosion processes of carbon steel in artificial soil: active area and differential aeration cells. Electrochim. Acta. 213, 698–708 (2016). https://doi.org/10.1016/j.electacta.2016.07.163

    Article  CAS  Google Scholar 

  60. I.A. Denison, M. Romanoff, Corrosion of galvanized steel in soils. J. Res. Nat. Bureau. Stand. 49, 299–314 (1952). https://doi.org/10.6028/jres.049.031

    Article  CAS  Google Scholar 

  61. A. Poudel, K.P. Dahal, D. KC and J. Bhattarai, A classification approach for corrosion rating of soil to buried water pipelines: a case study in Budhanilkantha-Maharajganj Roadway areas of Nepal. World J. Appl. Chem. 5(3), 47−56 (2020). https://doi.org/10.11648/j.wjac.20200503.12

    Article  Google Scholar 

  62. K.H. Logan, Underground Corrosion, National Bureau of Standards Circular 450. (The US Department of Commerce, Government Printing Office, Washington DC, USA, 1945)

    Book  Google Scholar 

  63. A. Benmoussa, H. Hadjel, M. Traisnel, Corrosion behavior of API 5L X-60 pipeline steel exposed to near-neutral pH soil simulating solution. Mater. Corros. 57, 771–777 (2006). https://doi.org/10.1002/maco.200503964

    Article  CAS  Google Scholar 

  64. T.R. Calhoun, D.W. Harris, J. Keith, R.P. Fuerst, Corrosion Considerations for Buried Metallic Water Pipe, Technical Memorandum 8140-CC-2004-1. (US Department of the Interior Bureau of Reclamation, Technical Service Center, Denver, Colorado, 2004)

    Google Scholar 

  65. N. Yahaya, N.M. Noor, S.R. Othman, L.K. Sing, M.M. Din, New technique for studying soil-corrosion of underground pipeline. J. Appl. Sci. 11(9), 1510–1518 (2011). https://doi.org/10.3923/jas.2011.1510.1518

    Article  Google Scholar 

  66. L. Veleva, Soils and Corrosion (Chapter 32), Corrosion Tests and Standards: Application and Interpretation, 2nd edn. (ASTM International, West Conshohocken, USA, 2005)

    Google Scholar 

  67. S. Arzola, J. Mendoza-Flores, R. Duran-Romero, J. Genesca, Electrochemical behavior of API X70 steel in hydrogen sulfide-containing solutions. Corrosion. 62, 433–443 (2006). https://doi.org/10.5006/1.3278280

    Article  CAS  Google Scholar 

  68. T.R. Jack, Biological Corrosion Failures, Failure Analysis and Prevention. ASM handbook (ASM International, Materials Park, OH, USA, 2002), pp. 881–898.

  69. H.W. Liu, Y.E. Cheng, Microbial Corrosion of X52 Pipelines steel under soil with varied thickness soaked with a simulated soil solution containing sulfate-reducing bacterial and the associated galvanic coupling effect. Electrochim. Acta. 266, 312–325 (2018). https://doi.org/10.1016/j.electacta.2018.02.002

    Article  CAS  Google Scholar 

  70. T.R. Jack, M.J. Wilmott, Corrosion in Soils, Uhlig’s Corrosion Handbook, R.W. Revie, (Ed.), 3rd ed., (The Electrochemical Society Inc. & John Wiley & Sons Inc., New Jersey, USA, 2011), pp. 333–349.

  71. A.A. Bery, R. Saad, Tropical clayey sand soil’s behavior analysis and its empirical correlations via geophysics electrical resistivity method and engineering soil characterizations. Int. J. Geosci. 3(1), 111–116 (2012). https://doi.org/10.4236/ijg.2012.31013

    Article  Google Scholar 

  72. S. Gupta, B. Gupta, The critical soil moisture content in the underground corrosion of mild steel. Corros. Sci. 19(3), 171–178 (1979). https://doi.org/10.1016/0010-938X(79)90015-5

    Article  CAS  Google Scholar 

  73. W.G. Wang, D.J. Robert, A. Zhou, C.Q. Li, Effect of Corrosion Influencing Factors of Cast Iron Pipes in Clay Soil, Mechanics of Structures and Materials: Advancements and Challenges (Taylor & Francis Group, London, 2017), p. 357–362

    Google Scholar 

  74. M.N. Masri, M.F. Samsudin, M.A. Sulaiman, M. Mohamed, M.F. Mohd Amin, M.H. Mohamad Amini, M.K.A. Abdul Razab, N.H. Abdullah, B. Abu Bakar, M.I. Ahmad, N.A.A. Nik Yusuf, Microscopic study on the corrosion of underground pipeline. Key Eng. Mater. 694, 172–176 (2016). https://doi.org/10.4028/www.scientific.net/kem.694.172

  75. M. Romanoff, Underground Corrosion, National Bureau of Standards Circular 579. (The US Department of Commerce, Government Printing Office, Washington DC, USA, 1957)

    Book  Google Scholar 

  76. H. Huang, Y.Y. Wu, M.F. Peng, X.H. Ma, X.Y. Mao, J.R. Wu, X. Gao, Application of principal component analysis method in comprehensive evaluation of soil corrosion. IOP Conf. Ser.: Mater. Sci. Eng. 504, 012070 (2019). https://doi.org/10.1088/1757-899X/504/1/012070

  77. G. Calamita, L. Brocca, A. Perrone, S. Piscitelli, V. Lapenna, F. Melone, T. Moramarco, Electrical resistivity and TDR methods for soil moisture estimation in Central Italy test-sites. J. Hydrol. 454(455), 101–112 (2012). https://doi.org/10.1016/j.jhydrol.2012.06.001

    Article  Google Scholar 

  78. H.M. Ezuber, A. Alshater, S.M.Z. Hossain, A. El-Basir, Impact of soil characteristics and moisture content on the corrosion of underground steel pipelines. Arab. J. Sci. Eng. 45(8), (2020). https://doi.org/10.1007/s13369-020-04887-8

  79. R. Hirata, W. Yonemoto, A. Ooi, E. Tada, A. Nishikata, Influence of soil particle size, covering thickness, and pH on soil corrosion of carbon steel. ISIJ Int. 60(11), 2533–2540 (2020). https://doi.org/10.2355/isijinternational.ISIJINT-2020-261

    Article  CAS  Google Scholar 

  80. Standard Practice for Polyethylene Encasement for Ductile Iron Pipe for Water and Other Liquids, ASTM A674-18, (ASTM International, West Conshohocken, USA, 2018).

  81. NAC, Report on the Review of the Bureau of Reclamation’s Corrosion Prevention Standards for Ductile Iron Pipe, D.W. Johnson, R. Bianchetti, R.J. Firlds, C.A. Handwerker, J.O. Brien, M.O. Keefe, J.S. Sagues, W.S. Spickelmire, D. Trejo, (Eds), (National Academy of Sciences, The National Academy Press, Washington, USA, 2009), pp. 1−186.

Download references

Funding

This work is partially supported by the Nepal Academy of Science and Technology (NAST) for providing the NAST Ph.D. scholarship to KP Dahal.

Author information

Authors and Affiliations

Authors

Contributions

KPD and JB designed experiments; sample collection, data analysis, and results summarization by KPD, JNT, and MG. The first draft of the manuscript was written by KPD & JB, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Jagadeesh Bhattarai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahal, K.P., Timilsena, J.N., Gautam, M. et al. Investigation on Probabilistic Model for Corrosion Failure Level of Buried Pipelines in Kirtipur Urban Areas (Nepal). J Fail. Anal. and Preven. 21, 914–926 (2021). https://doi.org/10.1007/s11668-021-01138-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-021-01138-2

Keywords

Navigation