Skip to main content
Log in

Anti-explosion Design Method for Aluminum Alloy Doors in Ordinary Buildings

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The door is a primary target for an explosive attack. The design of special building structure and its blast-resistant door has been reported in the previous literature. However, there is little about the failure analysis and design method for the anti-explosion property of aluminum alloy doors in ordinary buildings. Aiming at the problem of anti-explosion property of aluminum alloy doors in ordinary buildings, plastic deformation was used as the failure model, and a method to improve the anti-explosion property by controlling the external conditions was developed in this study. Based on dimensionless analysis and finite element simulation, the dynamic responses of aluminum alloy doors under blast load were compared with the experimental data, and the correctness of the model was verified. The prediction model for anti-explosion property of aluminum alloy doors was established, which provided a scientific basis to prevent the failure of aluminum alloy doors with different sizes and thicknesses. The critical amount of explosive charge to aluminum alloy doors with different explosion distances or thicknesses was obtained according to the quantitative results. The use of polyurea coating greatly improved the anti-explosion property of the door.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Jen, L.Y. Chang, Effect of thickness of face sheet on the bending fatigue strength of aluminum honeycomb sandwich beams. Eng. Fail. Anal. 16, 1282–1293 (2009). https://doi.org/10.1016/j.engfailanal.2008.08.004

    Article  CAS  Google Scholar 

  2. B.C. Cerik, Damage assessment of marine grade aluminium alloy-plated structures due to air blast and explosive loads. Thin Wall Struct. 110, 123–132 (2017). https://doi.org/10.1016/j.tws.2016.10.021

    Article  Google Scholar 

  3. V. A. Salomoni, G. Mazzucco, G. Xotta, R. Fincato, C. E. Majorana, M. Schiavon, Nonlinear modelling, design, and test of steel blast-resistant doors. Adv Mech. Volume 2013, Article ID 908373, 15 pages. http://dx.doi.org/10.1155/2013/908373

  4. M.V. Seica, J.A. Packer, D.Z. Yankelevsky, Blast and impact loading effects on glass and steel elements and materials. Thin Wall Struct. 134, 384–394 (2019). https://doi.org/10.1016/j.tws.2018.07.048

    Article  Google Scholar 

  5. F. Meng, B. Zhang, Z. Zhao, Y. Xu, H. Fan, F. Jin, A novel all-composite blast-resistant door structure with hierarchical stiffeners. Compos. Struct. 148, 113–126 (2016). https://doi.org/10.1016/j.compstruct.2016.03.066

    Article  Google Scholar 

  6. W. Chen, H. Hao, Numerical study of a new multi-arch double-layered blast-resistance door panel. Int. J. Impact Eng 43, 16–28 (2012). https://doi.org/10.1016/j.ijimpeng.2011.11.010

    Article  Google Scholar 

  7. M. Hsieh, J. Hung, D. Chen, Investigation on the blast resistance of a stiffened door structure. J. Mar. Sci Tech-TaiW. 16, 149–157 (2008)

    Google Scholar 

  8. C.G. Koh, K.K. Ang, P.F. Chan, Dynamic analysis of shell structures with application to blast resistant doors. Shock Vibr. 10, 269–279 (2003). https://doi.org/10.1155/2003/357969

    Article  Google Scholar 

  9. B. Zhang, H. He, J. Zhou, Q. Zhou, H. Fan, Construction and failure analysis of ultra-light GFRP fluted-core sandwich protective structures. Comops. Sci. Technol. 173, 73–82 (2019). https://doi.org/10.1016/j.compscitech.2019.02.003

    Article  CAS  Google Scholar 

  10. J.K. Paik, M.S. Lee, A semi-analytical method for the elastic-plastic large deflection analysis of stiffened panels under combined biaxial compression_tension, biaxial in-plane bending, edge shear, and lateral pressure loads. Thin Wall Struct. 43, 375–410 (2005). https://doi.org/10.1016/j.tws.2004.07.022

    Article  Google Scholar 

  11. F. Bagnoli, M. Bernabei, A. Ciliberto, Failure analysis of an aircraft auxiliary power unit air intake door. Eng. Fail. Anal. 18, 284–294 (2011). https://doi.org/10.1016/j.engfailanal.2010.09.007

    Article  CAS  Google Scholar 

  12. S.G. Luckey, S. Subramanian, C. Young, P.A. Friedman, Technical and cost study of superplastic forming of a lightweight aluminum door structure. J. Mater. Eng. Perform. 16, 266–273 (2007). https://doi.org/10.1007/s11665-007-9047-x

    Article  CAS  Google Scholar 

  13. Z. Zhao, B. Zhang, J. Zhou, H. Chen et al., Quasi-far-field blast responses of hierarchical orthogrid-stiffened sheet molding compound (SMC) protective door structures. Eng. Struct. (2018). https://doi.org/10.1016/j.engstruct.2018.05.001

    Article  Google Scholar 

  14. L. Lei, X. He, D. Zhao, Y. Zhang, F. Gu, A. Ball, Clinch-bonded hybrid joining for similar and dissimilar copper alloy, aluminium alloy and galvanised steel sheets. Thin Wall Struct. 131, 393–403 (2018). https://doi.org/10.1016/j.tws.2018.07.017

    Article  Google Scholar 

  15. X. Wu, J. Liu, X. Zhao, Z. Yang, R. Xu, Study of the fire resistance performance of a kind of steel fire door. Procedia Eng. (2013). https://doi.org/10.1016/j.proeng.2013.02.166

    Article  Google Scholar 

  16. N. Yun, D. Shin, S. Ji, C. Shim, Experiments on blast protective systems using aluminum foam panels. Strucy. Eng. 18(7), 2153–2161 (2014). https://doi.org/10.1007/s12205-014-0092-3

    Article  Google Scholar 

  17. 신현섭,김원우,김성욱, Design Sensitivity Analysis of a Steel-concrete Double-leaf Blast-resistant Door to Determine the Steel Ratio, Journal of The Korean Society of Hazard Mitigation. 19(2019)165-177

  18. B. Zhang, H. Chen, Z. Zhao, H. Fan, F. Jin, Blast response of hierarchical anisogrid stiffened composite panel: Considering the damping effect. Int. J. Mech. Sci. 140, 250–259 (2018). https://doi.org/10.1016/j.ijmecsci.2018.03.007

    Article  Google Scholar 

  19. B. Zhang, F. Jin, Z. Zhao, Z. Zhou, Y. Xua, H. Chen, H. Fan, Hierarchical anisogrid stiffened composite panel subjected to blast loading: Equivalent theory. Compos. Struct. 187, 259–268 (2018). https://doi.org/10.1016/j.compstruct.2017.12.059

    Article  Google Scholar 

  20. J. Isaacs, N.S. Nemat, Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments. Mech. Mater. 42(6), 628–639 (2010)

    Article  Google Scholar 

  21. K. Ackland, C. Anderson, T.D. Ngo, Deformation of polyurea-coated steel plates under localized blast loading. Int. J. Impact Eng 51(1), 13–22 (2013)

    Article  Google Scholar 

  22. G.J. Mcshane, C. Stewart, M.T. Aronson, Dynamic rupture of polymer-metal bilayer plates. Int. J. Solid Struct. 45(16), 4407–4426 (2008)

    Article  CAS  Google Scholar 

  23. S. Tekalur, A. Shukla, K. Shivakumar, Blast resistance of polyurea based layered composite materials. Compos. Struct. 84(3), 271–281 (2008)

    Article  Google Scholar 

  24. T.J. Vogler, T. Ao, J.R. Asay, High-pressure strength of aluminum under quasi-isentropic loading. Int. J. Plast 25, 671–694 (2009). https://doi.org/10.1016/j.ijplas.2008.12.003

    Article  CAS  Google Scholar 

  25. N. He, C. Xiang, Q. Zhang, Numerical calculation of JWL EOS parameters for explosives. J. Beijing Inst. Technol. 20(04), 433–437 (2011)

    CAS  Google Scholar 

  26. Y. Choi, J. Lee, Y. Yoo, K. Yun, A study on the behavior of blast proof door under blast load. Int. J. Pre. Eng. Manu. 17, 119–124 (2019). https://doi.org/10.1007/s12541-016-0015-y

    Article  Google Scholar 

  27. X. Wang, R. Yu, Analysis of blast wave propagation and dynamic response of structures behind an explosion-proof dike. J. Fail. Anal. Prevent. 19, 1322–1336 (2019)

    Article  Google Scholar 

  28. J. Xie, C. Jiang, S. Zhou, Dynamic response of fully clamped circular aluminum alloy plate subjected to near field explosion. J. Beijing Inst. Technol. 38, 1222–1230 (2018)

    Google Scholar 

  29. G. Wu, X. Li, W. Zhou, J. Zhu, Numerical simulation and experimental investigations on anomalous dynamic response of aluminum alloy circular plate subjected to air blast. Acta Armam. 30, 130–133 (2009)

    Google Scholar 

  30. J. Zheng, S. Zhou, J. Xie, Experimental method for dynamic response of 2024-T3 aluminum alloy plate under blast load. Equip. Manuf. Technol. 2, 127–130 (2017)

    Article  Google Scholar 

  31. Department of the Army, USA. TM5-1300 structures to resist the effects of accidental explosions. Washington: Department of the Army, 1990

  32. S. Yao, K. Yan, S. Lu, P. Xu, Prediction and application of energy absorption characteristics of thin-walled circular tubes based on dimensional analysis. Thin Wall Struct. 130, 505–519 (2018). https://doi.org/10.1016/j.tws.2018.06.015

    Article  Google Scholar 

  33. A. Rotariu, F. Bucur, G. Toader et al., Experimental study on polyurea coating effects on deformation of metallic plates subjected to air blast loads. Mater. Plast. 53, 670–674 (2016)

    Google Scholar 

Download references

Acknowledgements

The research presented in this paper was supported by the National Natural Science Foundation of China (11972089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Liang, H., Liu, L. et al. Anti-explosion Design Method for Aluminum Alloy Doors in Ordinary Buildings. J Fail. Anal. and Preven. 21, 268–279 (2021). https://doi.org/10.1007/s11668-020-01055-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-01055-w

Keywords

Navigation