Skip to main content
Log in

Deposition Mechanism Analysis of Cold-Sprayed Fluoropolymer Coatings and Its Wettability Evaluation

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Polymer coating by cold spray presents interesting features such as the possibility of protecting metallic substrates or adding functionalities to a structure. However, it is characterized by a low deposition efficiency and a weak interface between the substrate and the coating. In this study, we performed fluoropolymer coatings by the cold-spray process. Analysis of the particle deposition during cold spray highlighted the importance of the particle size, substrate temperature and inlet gas temperature and pressure on the adhesion polymer/substrate. The addition of hydrophobized fumed nano-ceramics (FNC) to the polymer feedstock enhances the deposition efficiency and polymer adhesion on the substrate. The addition of fumed nano-alumina (FNA) to the polymer feedstock tends to give better results than fumed nano-silica in terms of deposition efficiency thanks to (1) the difference in surface charge leading to the attractive force between the polymer and the FNA during the powder preparation stage and (2) a homogeneous repartition of the FNA on the polymer particle surface. In addition, the hydrophobization of the FNC maintains and enhances the hydrophobicity and water repellency properties of the fluoropolymer coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E. Dhanumalayan and G.M. Joshi, Performance Properties and Applications of Polytetrafluoroethylene (PTFE)-a Review, Adv. Compos. Hybrid Mater., 2018, 1(2), p 247-268. https://doi.org/10.1007/s42114-018-0023-8

    Article  CAS  Google Scholar 

  2. T.R. Dargaville, G.A. George, D.J.T. Hill, and A.K. Whittaker, An Investigation of the Thermal and Tensile Properties of PFA Following γ-Radiolysis, Macromolecules, 2003, 36(19), p 7132-7137. https://doi.org/10.1021/ma0302309

    Article  CAS  Google Scholar 

  3. J. Gardiner, Fluoropolymers: Origin, Production, and Industrial and Commercial Applications, Aust. J. Chem., 2015, 68(1), p 13-22

    Article  CAS  Google Scholar 

  4. N.S. Bhairamadgi, S.P. Pujari, C.J.M. Van Rijn, and H. Zuilhof, Adhesion and Friction Properties of Fluoropolymer Brushes: on the Tribological Inertness of Fluorine, Langmuir, 2014, 30(42), p 12532-12540

    Article  CAS  Google Scholar 

  5. H. Teng, Overview of the Development of the Fluoropolymer Industry, Appl. Sci., 2012, 2(2), p 496-512. https://doi.org/10.3390/app2020496

    Article  Google Scholar 

  6. Y. Ohkubo, K. Ishihara, M. Shibahara, A. Nagatani, K. Honda, K. Endo, and K. Yamamura, Drastic Improvement in Adhesion Property of Polytetrafluoroethylene (PTFE) via Heat-Assisted Plasma Treatment Using a Heater, Sci. Rep., 2017, 7(1), p 1-9. https://doi.org/10.1038/s41598-017-09901-y

    Article  CAS  Google Scholar 

  7. I. Mathieson, D.M. Brewis, I. Sutherland, and R.A. Cayless, Pretreatments of Fluoropolymers, J. Adhes., 1994, 46(1–4), p 49-56

    Article  CAS  Google Scholar 

  8. V. Champagne, D. Helfritch, P. Leyman, R. Lempicki, and S. Grendahl, The Effects of Gas and Metal Characteristics on Sprayed Metal Coatings, Modell. Simul. Mater. Sci. Eng., 2005, 13(7), p 1119-1128

    Article  CAS  Google Scholar 

  9. S. Grigoriev, A. Okunkova, A. Sova, P. Bertrand, and I. Smurov, Cold Spraying: from Process Fundamentals Towards Advanced Applications, Surf. Coat. Technol., 2015, 268, p 77-84. https://doi.org/10.1016/j.surfcoat.2014.09.060

    Article  CAS  Google Scholar 

  10. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V.M. Fomin, “Cold Spray Technology, Elsevier, Amsterdam, 2007

    Google Scholar 

  11. K. Ogawa, K. Ito, K. Ichimura, Y. Ichikawa, S. Ohno, and N. Onda, Characterization of Low-Pressure Cold-Sprayed Aluminum Coatings, J. Therm. Spray Technol., 2008, 17, p 728-735

    Article  CAS  Google Scholar 

  12. Y. Ichikawa and K. Ogawa, Effect of Substrate Surface Oxide Film Thickness on Deposition Behavior and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 2015, 24, p 1269-1276

    Article  Google Scholar 

  13. Y. Ichikawa and K. Ogawa, Critical Deposition Condition of CoNiCrAlY Cold Spray Based on Particle Deformation Behavior, J. Therm. Spray Technol., 2017, 26, p 340-349. https://doi.org/10.1007/s11666-016-0477-6

    Article  CAS  Google Scholar 

  14. Y. Ichikawa, R. Tokoro, M. Tanno, and K. Ogawa, Elucidation of Cold-Spray Deposition Mechanism by Auger Electron Spectroscopic Evaluation of Bonding Interface Oxide Film, Acta Mater., 2019, 164, p 39-49

    Article  CAS  Google Scholar 

  15. M.F. Smith, Comparing cold spray with thermal spray coating technologies, The Cold Spray Materials Deposition Process: Fundamentals and Applications, V.K. Champagne, Ed., Woodhead Publishing Limited, Cambridge, 2007, p 43-61

    Chapter  Google Scholar 

  16. J.D. Majumdar, Handbook of Manufacturing Engineering and Technology, Handbook of Manufacturing Engineering and Technology, Springer, Berlin, 2013

    Google Scholar 

  17. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176

    Article  CAS  Google Scholar 

  18. T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: the Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379

    Article  CAS  Google Scholar 

  19. D. Macdonald, R. Fernández, F. Delloro, and B. Jodoin, Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing, J. Therm. Spray Technol., 2017, 26, p 598-609

    Article  CAS  Google Scholar 

  20. Y. Xu and I.M. Hutchings, Cold Spray Deposition of Thermoplastic Powder, Surf. Coat. Technol., 2006, 201(6), p 3044-3050

    Article  CAS  Google Scholar 

  21. A.S. Alhulaifi, G.A. Buck, and W.J. Arbegast, Numerical and Experimental Investigation of Cold Spray Gas Dynamic Effects for Polymer Coating, J. Therm. Spray Technol., 2012, 21(5), p 852-862. https://doi.org/10.1007/s11666-012-9743-4

    Article  CAS  Google Scholar 

  22. Z. Khalkhali and J.P. Rothstein, Characterization of the Cold Spray Deposition of a Wide Variety of Polymeric Powders, Surf. Coat. Technol., 2020, 383, p 125251

    Article  CAS  Google Scholar 

  23. K. Ravi, Y. Ichikawa, T. Deplancke, K. Ogawa, O. Lame, and J.Y. Cavaille, Development of Ultra-High Molecular Weight Polyethylene (UHMWPE) Coating by Cold Spray Technique, J. Therm. Spray Technol., 2015, 24(6), p 1015-1025

    Article  CAS  Google Scholar 

  24. K. Ravi, Y. Ichikawa, K. Ogawa, T. Deplancke, O. Lame, and J.Y. Cavaille, Mechanistic Study and Characterization of Cold-Sprayed Ultra-High Molecular Weight Polyethylene-Nano-Ceramic Composite Coating, J. Therm. Spray Technol., 2016, 25(1–2), p 160-169

    Article  CAS  Google Scholar 

  25. T.B. Bush, Z. Khalkhali, V. Champagne, D.P. Schmidt, and J.P. Rothstein, Optimization of Cold Spray Deposition of High-Density Polyethylene Powders, J. Therm. Spray Technol., 2017, 26, p 1548-1564. https://doi.org/10.1007/s11666-017-0627-5

    Article  CAS  Google Scholar 

  26. S. Shah, J. Lee, and J.P. Rothstein, Numerical Simulations of the High-Velocity Impact of a Single Polymer Particle During Cold-Spray Deposition, J. Therm. Spray Technol., 2017, 26(5), p 970-984

    Article  CAS  Google Scholar 

  27. K. Ravi, T. Deplancke, K. Ogawa, J.Y. Cavaillé, and O. Lame, Understanding Deposition Mechanism in Cold Sprayed Ultra High Molecular Weight Polyethylene Coatings on Metals by Isolated Particle Deposition Method, Addit. Manuf., 2017, 2018(21), p 191-200. https://doi.org/10.1016/j.addma.2018.02.022

    Article  CAS  Google Scholar 

  28. K. Ravi, T. Deplancke, O. Lame, K. Ogawa, J.-Y. Cavaillé, and F. Dalmas, Influence of Nanoceramic Interlayer on Polymer Consolidation During Cold-Spray Coating Formation, J. Mater. Process. Technol., 2019, https://doi.org/10.1016/j.jmatprotec.2019.116254

    Article  Google Scholar 

  29. W. Tillmann and J.F. Zajaczkowski, Investigation of Low-Pressure Cold-Gas Dynamic Spraying of Polyamide-12 (PA12) on Steel Surfaces, IOP Conf. Ser. Mater. Sci. Eng., 2019, 480(1), p 012009

    Article  CAS  Google Scholar 

  30. W. Lock Sulen, K. Ravi, C. Bernard, N. Mary, Y. Ichikawa, and K. Ogawa, Effects of Nano-Ceramic Particle Addition for Cold Sprayed Fluoropolymer Coatings, Key Eng. Mater., 2019, 813 KEM, p 141-146

    Article  Google Scholar 

  31. A. Alkhimov, A. Papyrin, and V. Kosarev, Gas-Dynamic Spraying Method for Applying a Coating, US Patent 5,302,414, 1994.

  32. V. Gillet, E. Aubignat, S. Costil, B. Courant, C. Langlade, P. Casari, W. Knapp, and M.P. Planche, Development of Low Pressure Cold Sprayed Copper Coatings on Carbon Fiber Reinforced Polymer (CFRP), Surf. Coat. Technol., 2018, 2019(364), p 306-316. https://doi.org/10.1016/j.surfcoat.2019.01.011

    Article  CAS  Google Scholar 

  33. G. Yang, W. Xie, M. Huang, V.K. Champagne, J.H. Lee, J. Klier, and J.D. Schiffman, Polymer Particles with a Low Glass Transition Temperature Containing Thermoset Resin Enable Powder Coatings at Room Temperature, Ind. Eng. Chem. Res., 2019, 58(2), p 908-916

    Article  CAS  Google Scholar 

  34. E.D. Zanotto and J.C. Mauro, The Glassy State of Matter: Its Definition and Ultimate Fate, J. Non-Cryst. Solids, 2017, 471(April), p 490-495

    Article  CAS  Google Scholar 

  35. L.H. Sperling, Introduction to Physical Polymer Science: Fourth Edition, Introduction to Physical Polymer Science: Fourth Edition, Wiley, Hoboken, 2005

    Book  Google Scholar 

  36. R.N. Raoelison, C. Verdy, and H. Liao, Cold Gas Dynamic Spray Additive Manufacturing Today: Deposit Possibilities, Technological Solutions and Viable Applications, Mater. Des., 2017, 133, p 266-287. https://doi.org/10.1016/J.MATDES.2017.07.067

    Article  Google Scholar 

  37. K. Ravi, W.L. Sulen, C. Bernard, Y. Ichikawa, and K. Ogawa, Fabrication of Micro-/Nano-Structured Super-Hydrophobic Fluorinated Polymer Coatings by Cold-Spray, Surf. Coat. Technol., 2019, 373, p 17-24

    Article  CAS  Google Scholar 

  38. A. Gibas, A. Baszczuk, M. Jasiorski, and M. Winnicki, Prospects of Low-Pressure Cold Spray for Superhydrophobic Coatings, Coatings, 2019, 9(12), p 829. https://doi.org/10.3390/coatings9120829

    Article  CAS  Google Scholar 

  39. The Chemours Company, “Teflon™ Industrial Coatings: Fluorinated Ethylene Propylene,” 2020, https://www.teflon.com/en/products/coatings/fep-coatings. Accessed 11 April 2020.

  40. DuPont, “Teflon FEP 4100,” (U.S.A.), 1998, http://www.rjchase.com/fep_handbook.pdf. Accessed 15 May 2019.

  41. G. Wypych, Handbook of Polymers: Second Edition, Handbook of Polymers: Second Edition, ChemTec Publishing, Scarborough, 2016

    Google Scholar 

  42. Evonik Industries, “Fumed Silica Technical Overview,” 2015, p 1–104, https://www.aerosil.com/sites/lists/re/documentssi/ti-1283-aeroxide-and-aerosil-in-lighting-applications-en.pdf. Accessed 15 July 2019.

  43. Evonik Industries, “AEROXIDE®-Fumed Metal Oxides,” 2017, p 1–84, https://www.aerosil.com/product/aerosil/downloads/to-aeroxide-en.pdf. Accessed 16 Nov 2018.

  44. A.S. Dukhin and P.J. Goetz, Characterization of Liquids, Dispersions, Emulsions, and Porous Materials Using Ultrasound,” Characterization of Liquids, Dispersions, Emulsions, and Porous Materials Using Ultrasound, Elsevier, Amsterdam, 2017

    Google Scholar 

  45. Ing. Christian Oetzel, “PARTICLE,” 3P Instruments Particle World, 2018, https://www.3p-instruments.com/wp-content/uploads/2018/05/PARTICLE-WORLD-19.pdf. Accessed 2 April 2020.

  46. V. Villani and R. Pucciariello, Thermal Properties at Room Temperature of Polytetrafluoroethylene, J. Therm. Anal., 1991, 37(8), p 1759-1766

    Article  CAS  Google Scholar 

  47. R. Pucciariello and V. Villani, Melting and Crystallization Behavior of Poly(Tetrafluoroethylene) by Temperature Modulated Calorimetry, Polymer (Guildf), 2004, 45(6), p 2031-2039

    Article  CAS  Google Scholar 

  48. M.C. Righetti, A. Boggioni, M. Laus, D. Antonioli, K. Sparnacci, and L. Boarino, Thermal and Mechanical Properties of PES/PTFE Composites and Nanocomposites, J. Appl. Polym. Sci., 2013, 130(5), p 3624-3633

    Article  CAS  Google Scholar 

  49. P. Fauchais and M. Vardelle, Sensors in Spray Processes, J. Therm. Spray Technol., 2010, 19(4), p 668-694

    Article  CAS  Google Scholar 

  50. C.-D. Wen and I. Mudawar, “Experimental investigation of emissivity of aluminum alloys and temperature determination using multispectral radiation thermometry (MRT) algorithms. in 2010 14th International Heat Transfer Conference, ASME, Ed., Aug 8–13 (Washington, DC), ASME, 2002, p 551–562

  51. L. Gao and T.J. McCarthy, Contact Angle Hysteresis Explained, Langmuir, 2006, 22, p 6234-6237

    Article  CAS  Google Scholar 

  52. S. Lee, J.S. Park, and T.R. Lee, The Wettability of Fluoropolymer Surfaces: influence of Surface Dipoles, Langmuir Am Chem Soc, 2008, 24(9), p 4817-4826. https://doi.org/10.1021/la700902h

    Article  CAS  Google Scholar 

  53. M. Ruan, Y. Zhan, Y. Wu, X. Wang, W. Li, Y. Chen, M. Wei, X. Wang, and X. Deng, Preparation of PTFE/PDMS Superhydrophobic Coating and Its Anti-Icing Performance, RSC Adv., 2017, 7, p 41339-41344

    Article  CAS  Google Scholar 

  54. S. Das, S. Kumar, S.K. Samal, S. Mohanty, and S.K. Nayak, A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications, Ind. Eng. Chem. Res., 2018, 57(8), p 2727-2745

    Article  CAS  Google Scholar 

  55. R.J. Hunter, Electroviscous and Viscoelectric Effects, Zeta Potential in Colloid Science, Academic Press Limited, Cambridge, 1981, p 79-218. https://doi.org/10.1016/b978-0-12-361961-7.50009-2

    Book  Google Scholar 

  56. V.M. Gun’ko, I.F. Mironyuk, V.I. Zarko, E.F. Voronin, V.V. Turov, E.M. Pakhlov, E.V. Goncharuk, Y.M. Nychiporuk, N.N. Vlasova, P.P. Gorbik, O.A. Mishchuk, A.A. Chuiko, T.V. Kulik, B.B. Palyanytsya, S.V. Pakhovchishin, J. Skubiszewska-Ziȩba, W. Janusz, A.V. Turov, and R. Leboda, Morphology and Surface Properties of Fumed Silicas, J. Colloid Interface Sci., 2005, 289(2), p 427-445

    Article  Google Scholar 

  57. E.I. Chereches and A.A. Minea, Electrical Conductivity of New Nanoparticle Enhanced Fluids: An Experimental Study, Nanomaterials, 2019, 9(9), p 1228

    Article  CAS  Google Scholar 

  58. M. Kotrba and L.-H. Schilling, Measurement of PH in Ethanol, Distilled Water, and Their Mixtures: on the Assessment of PH in Ethanol-Based Natural History Wet Collections and the Detrimental Aspects of Dilution with Distilled Water, Collect. Forum, 2017, 31(1–2), p 84-101

    Article  Google Scholar 

  59. G.V. Gusev, Methods of Investigation: Hermans-Weidinger X-Ray Diffraction Technique for Determining Polymer Crystallinity and the Use of Ruland Ratio, Polym. Sci. USSR, 1977, 20, p 1295-1297. https://doi.org/10.1016/0032-3950(78)90270-8

    Article  Google Scholar 

  60. K.A. Moly, H.J. Radusch, R. Androsh, S.S. Bhagawan, and S. Thomas, Nonisothermal Crystallisation, Melting Behavior and Wide Angle X-Ray Scattering Investigations on Linear Low Density Polyethylene (LLDPE)/Ethylene Vinyl Acetate (EVA) Blends: Effects of Compatibilisation and Dynamic Crosslinking, Eur. Polym. J., 2005, 41, p 1410-1419. https://doi.org/10.1016/j.eurpolymj.2004.10.016

    Article  CAS  Google Scholar 

  61. H. Che, P. Vo, and S. Yue, Investigation of Cold Spray on Polymers by Single Particle Impact Experiments, J. Therm. Spray Technol., 2019, 28(1–2), p 135-143

    Article  Google Scholar 

  62. K.H. Kim, Z. Akase, T. Suzuki, and D. Shindo, Charging Effects on SEM/SIM Contrast of Metal/Insulator System in Various Metallic Coating Conditions, Mater. Trans., 2010, 51(6), p 1080-1083

    Article  CAS  Google Scholar 

  63. M. Paven, L. Mammen, and D. Vollmer, “Challenges and Opportunities of Superhydrophobic/Superamphiphobic Coatings in Real Applications, R. Soc, RSC Smart Mater, 2016, https://doi.org/10.1039/9781782622192-00209

    Book  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Japan Society for the Promotion of Science (JSPS) Kakenhi, for the financial assistance throughout the work (Grant-in-Aid for Scientific Research(A)17H01235). We extended our acknowledgement to Nippon Aerosil Co. (NAC) for providing the fumed nano-alumina and Iwate Industrial Research Institute, Dr. Nicolas Mary and Mr. Katsumi Ito for their assistance and invaluable guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley Lock Sulen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lock Sulen, W., Ravi, K., Bernard, C. et al. Deposition Mechanism Analysis of Cold-Sprayed Fluoropolymer Coatings and Its Wettability Evaluation. J Therm Spray Tech 29, 1643–1659 (2020). https://doi.org/10.1007/s11666-020-01059-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01059-w

Keywords

Navigation