Skip to main content
Log in

Wear and Corrosion Performance of Al-Cu-Fe-(Cr) Quasicrystalline Coatings Produced by HVOF

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

High-velocity oxygen fuel coatings were produced using gas-atomized Al62.5Cu25Fe12.5 and Al67Cu20Fe5Cr8 powders onto a ferritic stainless-steel substrate, resulting in two similar microstructures, consisting mainly of quasicrystalline phases. The goal of this work was to evaluate the performance of the quasicrystalline coatings under standard wear and corrosion tests. The samples were characterized by x-ray diffraction and scanning and transmission electron microscopy. Wear and friction behavior of the coatings and substrate were assessed by pin-on-disk tests. Vickers microhardness was also measured. The corrosion resistance was assessed through electrochemical measurements performed in alkaline and acidic medium in the absence and in the presence of chlorides. The coefficient of friction of the quasicrystalline coatings were inferior to the substrate, particularly the Al-Cu-Fe coating, with values close to 0.1. The Al62.5Cu25Fe12.5 alloy also showed the lowest specific wear rate, 1.7 × 10−4 mm3/N m, among the materials tested. In the presence of chlorides, the chromium containing coating presented better corrosion resistance with less surface damage after testing. However, the corrosion rate of the coating samples was low in both chloride-free alkaline and acidic conditions. Both Al62.5Cu25Fe12.5 and Al67Cu20Fe5Cr8 coatings presented corrosion potential considerably lower than the substrate for all tested media, which may be interesting for cathodic protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.-M. Dubois, Properties- and Applications of Quasicrystals and Complex Metallic Alloys, Chem. Soc. Rev., 2012, 41(20), p 6760

    Article  CAS  Google Scholar 

  2. J.M. Dubois, Useful Quasicrystals, World Scientific Publishing Co. Pte. Ltd., Singapore, 2005

    Book  Google Scholar 

  3. G. Laplanche, J. Bonneville, A. Joulain, V. Gauthier-Brunet, and S. Dubois, Mechanical Properties of Al-Cu-Fe Quasicrystalline and Crystalline Phases: An Analogy, Intermetallics, 2014, 50, p 54-58. https://doi.org/10.1016/j.intermet.2014.02.004

    Article  CAS  Google Scholar 

  4. E. Huttunen-Saarivirta, Microstructure, Fabrication and Properties of Quasicrystalline Al-Cu-Fe Alloys: A Review, J. Alloys Compd., 2004, 363(1-2), p 154-178. https://doi.org/10.1016/S0925-8388(03)00445-6

    Article  CAS  Google Scholar 

  5. C. Dong and J.M. Dubois, Quasicrystals and Crystalline Phases in Al65Cu20Fe10Cr5 Alloy, J. Mater. Sci., 1991, 26(6), p 1647-1654. https://doi.org/10.1007/BF00544677

    Article  CAS  Google Scholar 

  6. J.F. Liu, Z.Q. Yang, and H.Q. Ye, Direct Observation of Solid-State Reversed Transformation from Crystals to Quasicrystals in a Mg Alloy, Sci. Rep., 2015, 5, p 1-10

    Google Scholar 

  7. K.F. Kelton, W.J. Kim, and R.M. Stroud, A Stable Ti-Based Quasicrystal, Appl. Phys. Lett., 1997, 70(24), p 3230-3232. https://doi.org/10.1063/1.119133

    Article  CAS  Google Scholar 

  8. K.F. Kelton and P.C. Gibbons, Hydrogen Storage in Quasicrystals, MRS Bull., 1997, 22(11), p 69-72

    Article  CAS  Google Scholar 

  9. J.L. Libbert, J.Y. Kim, and K.F. Kelton, Oxygen in Ti-(Cr, Mn)-Si Icosahedral Phases and Approximants, Philos. Mag. A, 1999, 79(9), p 2209-2225. https://doi.org/10.1080/01418619908210418

    Article  CAS  Google Scholar 

  10. J.L. Libbert, K.F. Kelton, P.C. Gibbons, and A.I. Goldman, Large Unit Cell Crystal Approximant in Ti-Cr-Si Alloys, J. Non-Cryst. Solids, 1993, 153-154, p 53-57. https://doi.org/10.1016/0022-3093(93)90313-M

    Article  CAS  Google Scholar 

  11. W. Wolf, R. Schulz, S. Savoie, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Structural, Mechanical and Thermal Characterization of an Al-Co-Fe-Cr Alloy for Wear and Thermal Barrier Coating Applications, Surf. Coat. Technol., 2017, 319, p 241-248. https://doi.org/10.1016/j.surfcoat.2017.03.066

    Article  CAS  Google Scholar 

  12. J.M. Dubois, S.S. Kang, and J. Von Stebut, Quasicrystalline Low-Friction Coatings, J. Mater. Sci. Lett., 1991, 10(9), p 537-541. https://doi.org/10.1007/BF00726930

    Article  CAS  Google Scholar 

  13. W. Wolf, L.P.M. e Silva, G. Zepon, C.S. Kiminami, C. Bolfarini, and W.J. Botta, Single Step Fabrication by Spray Forming of Large Volume Al-Based Composites Reinforced with Quasicrystals, Scr. Mater., 2020, 181, p 86-91. https://doi.org/10.1016/j.scriptamat.2020.02.018

    Article  CAS  Google Scholar 

  14. K. Lee, J. Hsu, D. Naugle, and H. Liang, Multi-Phase Quasicrystalline Alloys for Superior Wear Resistance, Mater. Des., 2016, 108, p 440-447. https://doi.org/10.1016/j.matdes.2016.06.113

    Article  CAS  Google Scholar 

  15. C. Zhou, F. Cai, J. Kong, S. Gong, and H. Xu, A Study on the Tribological Properties of Low-Pressure Plasma-Sprayed Al-Cu-Fe-Cr Quasicrystalline Coating on Titanium Alloy, Surf. Coat. Technol., 2004, 187(2-3), p 225-229. https://doi.org/10.1016/j.surfcoat.2004.03.013

    Article  CAS  Google Scholar 

  16. L.P. Feng, T.M. Shao, Y.J. Jin, E. Fleury, D.H. Kim, and D.R. Chen, Temperature Dependence of the Tribological Properties of Laser Re-Melted Al-Cu-Fe Quasicrystalline Plasma Sprayed Coatings, J. Non-Cryst. Solids, 2005, 351(3), p 280-287. https://doi.org/10.1016/j.jnoncrysol.2004.08.269

    Article  CAS  Google Scholar 

  17. P. Archambault, P. Plaindoux, E. Belin-Ferre, and J.M. Dubois, Thermal and Electronic Properties of an AlCoFeCr Approximant of the Decagonal Phase, Mat. Res. Soc. Symp., 1999, 553, p 409-414

    Article  CAS  Google Scholar 

  18. E. Leshchinsky, A. Sobiesiak, and R. Maev, Intermetallic Al-, Fe-, Co- and Ni-Based Thermal Barrier Coatings Prepared by Cold Spray for Applications on Low Heat Rejection Diesel Engines, J. Therm. Spray Technol., 2018, 27(3), p 456-470. https://doi.org/10.1007/s11666-017-0681-z

    Article  CAS  Google Scholar 

  19. E. Fleury, W.T. Kim, J.S. Kim, D.H. Kim, W.T. Kim, H.S. Ahn, and S.M. Lee, C Omparative Study of the Tribological Behavior of Thermal Sprayed Quasicrystalline Coating Layers, J. Alloys Compd., 2002, 342, p 321-325

    Article  CAS  Google Scholar 

  20. D. Lu, J.P. Celis, S. Kenzari, V. Fournée, and D.B. Zhou, Tribological Behavior of Aluminum Matrix Composites Containing Complex Metallic Alloys AlCuFeB or AlCuFeCr Particles, Wear, 2011, 270(7-8), p 528-534. https://doi.org/10.1016/j.wear.2011.01.007

    Article  CAS  Google Scholar 

  21. D.S. Shaitura and A.A. Enaleeva, Fabrication of Quasicrystalline Coatings: A Review, Crystallogr. Reports, 2007, 52(6), p 945-952. https://doi.org/10.1134/S1063774507060041

    Article  CAS  Google Scholar 

  22. S. Siegmann, P. Kern, L. Rohr, and P.P. Bandyopadhyay, Tribological and Corrosion Behavior of Vacuum Plasma Sprayed Ti-Zr-Ni Quasicrystalline Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 947-953

    Article  CAS  Google Scholar 

  23. D.J. Sordelet, S.D. Widener, Y. Tang, and M.F. Besser, Characterization of a Commercially Produced Al-Cu-Fe-Cr Quasicrystalline Coating, Mater. Sci. Eng. A, 2000, 294-296, p 834-837

    Article  Google Scholar 

  24. W. Wolf, L.C.R. Aliaga, D.N. Travessa, C.R.M. Afonso, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Enhancement of Mechanical Properties of Aluminum and 2124 Aluminum Alloy by the Addition of Quasicrystalline Phases, Mater. Res., 2016, 19(suppl 1), p 74-79. https://doi.org/10.1590/1980-5373-mr-2016-0088

    Article  CAS  Google Scholar 

  25. K. Stan-Głowińska, L. Lityńska-Dobrzyńska, B. Kania, J. Dutkiewicz, Ł. Rogal, W. Skuza, J. Wojewoda-Budka, M.A. Gordillo, and J.M. Wiezorek, Effects of Hot-Compaction on the Structure and Properties of Al-Mn-Fe-X Alloys Strengthened with Quasi-Crystalline Icosahedral Phase, Mater. Des., 2017, 126, p 162-173. https://doi.org/10.1016/j.matdes.2017.04.043

    Article  CAS  Google Scholar 

  26. M. Galano, F. Audebert, I.C. Stone, and B. Cantor, Nanoquasicrystalline Al-Fe-Cr-Based Alloys. Part I: Phase Transformations, Acta Mater., 2009, 57(17), p 5107-5119. https://doi.org/10.1016/j.actamat.2009.07.011

    Article  CAS  Google Scholar 

  27. M. Galano, F. Audebert, G. Escorial, I.C. Stone, and B. Cantor, Nanoquasicrystalline Al-Fe-Cr-Based Alloys. Part II. Mechanical Properties, Acta Mater., 2009, 57(17), p 5120-5130. https://doi.org/10.1016/j.actamat.2009.07.009

    Article  CAS  Google Scholar 

  28. G.Y. Koga, A.M.B. e Silva, W. Wolf, C.S. Kiminami, C. Bolfarini, and W.J. Botta, Microstructure and Mechanical Behavior of Al92Fe3Cr2X3 (X = Ce, Mn, Ti, and V) Alloys Processed by Centrifugal Force Casting, J. Mater. Res. Technol., 2019, 8(2), p 2092-2097. https://doi.org/10.1016/j.jmrt.2018.12.022

    Article  CAS  Google Scholar 

  29. B.A. Silva Guedes de Lima, R. Medeiros Gomes, S.J. Guedes de Lima, D. Dragoe, M.G. Barthes-Labrousse, R. Kouitat-Njiwa, and J.M. Dubois, Self-Lubricating, Low-Friction, Wear-Resistant Al-Based Quasicrystalline Coatings, Sci. Technol. Adv. Mater., 2016, 17(1), p 71-79. https://doi.org/10.1080/14686996.2016.1152563

    Article  Google Scholar 

  30. E. Deltombe and M. Pourbaix, The Electrochemical Behavior of Aluminum—Potential PH Diagram of the System AI-H2O at 25°C, Corrosion, 1958, 14(11), p 16-20. https://doi.org/10.5006/0010-9312-14.11.16

    Article  Google Scholar 

  31. R.T. Li, V.K. Murugan, Z.L. Dong, and K.A. Khor, Comparative Study on the Corrosion Resistance of Al-Cr-Fe Alloy Containing Quasicrystals and Pure Al, J. Mater. Sci. Technol., 2016, 32(10), p 1054-1058. https://doi.org/10.1016/j.jmst.2016.07.005

    Article  CAS  Google Scholar 

  32. W. Wolf, S.A. Kube, S. Sohn, Y. Xie, J.J. Cha, B.E. Scanley, C.S. Kiminami, C. Bolfarini, W.J. Botta, and J. Schroers, Formation and Stability of Complex Metallic Phases Including Quasicrystals Explored through Combinatorial Methods, Sci. Rep., 2019, 9(1), p 7136. https://doi.org/10.1038/s41598-019-43666-w

    Article  CAS  Google Scholar 

  33. S.M. Lee, H.J. Jeon, B.H. Kim, W.T. Kim, and D.H. Kim, Solidification Sequence of the Icosahedral Quasicrystal Forming Al-Cu-Fe Alloys, Mater. Sci. Eng. A, 2001, 304-306(1-2), p 871-878

    Article  Google Scholar 

  34. D. Holland-Moritz, J. Schroers, B. Grushko, D.M. Herlach, and K. Urban, Dependence of Phase Selection and Micro Structure of Quasicrystal-Forming Al-Cu-Fe Alloys on the Processing and Solidification Conditions, Mater. Sci. Eng. A, 1997, 226-228, p 976-980. https://doi.org/10.1016/S0921-5093(96)10830-3

    Article  Google Scholar 

  35. W. Wolf, F.G. Coury, M.J. Kaufman, C. Bolfarini, C.S. Kiminami, and W.J. Botta, The Formation of Quasicrystals in Al-Cu-Fe-(M = Cr, Ni) Melt-Spun Ribbons, J. Alloys Compd., 2018, 731, p 1288-1294. https://doi.org/10.1016/j.jallcom.2017.09.139

    Article  CAS  Google Scholar 

  36. F.R.P. Feitosa, R.M. Gomes, M.M.R. Silva, S.J.G. De Lima, and J.M. Dubois, Effect of Oxygen/Fuel Ratio on the Microstructure and Properties of HVOF-Sprayed Al59Cu25.5Fe12.5B3 Quasicrystalline Coatings, Surf. Coat., 2018, 353, p 171-178. https://doi.org/10.1016/j.surfcoat.2018.08.081

    Article  CAS  Google Scholar 

  37. E. Fleury, S.M. Lee, W.T. Kim, and D.H. Kim, Efects of Air Plasma Spraying Parameters on the Al-Cu-Fe Quasicrystalline Coating Layer, J. Non-Cryst. Solids, 2000, 278, p 194-204

    Article  CAS  Google Scholar 

  38. D.J. Sordelet, M.F. Besser, and J.L. Logsdon, Abrasive Wear Behavior of Al-Cu-Fe Quasicrystalline Composite Coatings, Mater. Sci. Eng. A, 1998, 255, p 54-65

    Article  Google Scholar 

  39. Y. Kang, C. Zhou, S. Gong, and H. Xu, Electrochemical Behavior of Low-Pressure Plasma-Sprayed Al-Cu-Fe-Cr Quasicrystalline Coating, Vacuum, 2005, 79(3-4), p 148-154

    Article  CAS  Google Scholar 

  40. W. Wolf, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Designing New Quasicrystalline Compositions in Al-Based Alloys, J. Alloys Compd., 2020, 823, p 153765. https://doi.org/10.1016/j.jallcom.2020.153765

    Article  CAS  Google Scholar 

  41. E. Ura-Binczyk, N. Homazava, A. Ulrich, R. Hauert, M. Lewandowska, K.J. Kurzydlowski, and P. Schmutz, Passivation of Al-Cr-Fe and Al-Cu-Fe-Cr Complex Metallic Alloys in 1 M H2SO4 and 1 M NaOH Solutions, Corros. Sci., 2011, 53(5), p 1825-1837. https://doi.org/10.1016/j.corsci.2011.01.061

    Article  CAS  Google Scholar 

  42. E. Ura-Binczyk, A. Beni, M. Lewandowska, and P. Schmutz, Passive Oxide Film Characterisation on Al-Cr-Fe and Al-Cu-Fe-Cr Complex Metallic Alloys in Neutral to Alkaline Electrolytes by Photo- and Electrochemical Methods, Electrochim. Acta, 2014, 139, p 289-301. https://doi.org/10.1016/j.electacta.2014.07.010

    Article  CAS  Google Scholar 

  43. B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Effects of PH and Chloride Concentration on Pitting Corrosion of AA6061 Aluminum Alloy, Corros. Sci., 2008, 50(7), p 1841-1847

    Article  CAS  Google Scholar 

  44. S. Il Pyun and S.M. Moon, Corrosion Mechanism of Pure Aluminium in Aqueous Alkaline Solution, J. Solid State Electrochem., 2000, 4(5), p 267-272

    Article  Google Scholar 

  45. A. Korchef and A. Kahoul, Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing, Int. J. Corros., 2013, https://doi.org/10.1155/2013/983261

    Article  Google Scholar 

  46. J. Skrovan, A. Alfantazi, and T. Troczynski, Enhancing Aluminum Corrosion in Water, J. Appl. Electrochem., 2009, 39(10), p 1695-1702

    Article  CAS  Google Scholar 

  47. Z. Szklarska-Smialowska, Pitting Corrosion of Aluminum, Corros. Sci., 1999, 41(9), p 1743-1767

    Article  CAS  Google Scholar 

  48. I. Hutchings and P. Shipway, Friction, Tribology, 2nd ed., I. Hutchings and P. Shipway, Ed., Elsevier, Amsterdam, 2017, p 37-77 https://doi.org/10.1016/B978-0-08-100910-9.00003-9

    Chapter  Google Scholar 

  49. D.A. Rabson, Toward Theories of Friction and Adhesion on Quasicrystals, Prog. Surf. Sci., 2012, 87(9-12), p 253-271. https://doi.org/10.1016/j.progsurf.2012.10.001

    Article  CAS  Google Scholar 

  50. J. Dubois, New Prospects from Potential Applications of Quasicrystalline Materials, Mater. Sci. Eng. A, 2000, 294-296, p 4-9

    Article  Google Scholar 

  51. ASTM International, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus G99-17, Annual Book ASTM Standards, 2017, 05(2016), p 1-6

  52. R.P. Matthews, C.I. Lang, and D. Shechtman, Sliding Wear of Quasicrystalline Coatings, Tribol. Lett., 1999, 2000(7), p 179-181

    Article  Google Scholar 

  53. W. Wolf, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Fabrication of Al-Matrix Composite Reinforced with Quasicrystals Using Conventional Metallurgical Fabrication Methods, Scr. Mater., 2019, 173, p 21-25. https://doi.org/10.1016/j.scriptamat.2019.07.044

    Article  CAS  Google Scholar 

  54. U. Köster, W. Liu, H. Liebertz, and M. Michel, Mechanical Properties of Quasicrystalline and Crystalline Phases in Al-Cu-Fe Alloys, J. Non-Cryst. Solids, 1993, 153-154, p 446-452. https://doi.org/10.1016/0022-3093(93)90393-C

    Article  Google Scholar 

  55. I. Hutchings and P. Shipway, Sliding Wear, Tribology, 2nd ed., I. Hutchings and P. Shipway, Ed., Elsevier, Amsterdam, 2017, p 107-164 https://doi.org/10.1016/b978-0-08-100910-9.00005-2

    Chapter  Google Scholar 

  56. S. Pedrazzini, M. Galano, F. Audebert, D.M. Collins, F. Hofmann, B. Abbey, A.M. Korsunsky, M. Lieblich, A. GarciaEscorial, and G.D.W. Smith, Strengthening Mechanisms in an Al-Fe-Cr-Ti Nano-Quasicrystalline Alloy and Composites, Mater. Sci. Eng. A, 2016, 672, p 175-183. https://doi.org/10.1016/j.msea.2016.07.007

    Article  CAS  Google Scholar 

  57. H.R. Leonard, S. Rommel, T.J. Watson, T. Policandriotes, and M. Aindow, Development of Quasicrystal Morphology in Gas-Atomized Icosahedral-Phase-Strengthened Aluminum Alloy Powders, Mater. Des., 2019, 182, p 108094. https://doi.org/10.1016/j.matdes.2019.108094

    Article  CAS  Google Scholar 

  58. F. Ali, S. Scudino, M.S. Anwar, R.N. Shahid, V.C. Srivastava, V. Uhlenwinkel, M. Stoica, G. Vaughan, and J. Eckert, Al-Based Metal Matrix Composites Reinforced with Al-Cu-Fe Quasicrystalline Particles: Strengthening by Interfacial Reaction, J. Alloys Compd., 2014, 607, p 274-279. https://doi.org/10.1016/j.jallcom.2014.04.086

    Article  CAS  Google Scholar 

  59. K. Stan-Głowińska, L. Lityńska-Dobrzyńska, J. Morgiel, A. Góral, M.A. Gordillo, and J.M. Wiezorek, Enhanced Thermal Stability of a Quasicrystalline Phase in Rapidly Solidified Al-Mn-Fe-X Alloys, J. Alloys Compd., 2017, 702, p 216-228. https://doi.org/10.1016/j.jallcom.2016.12.383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support granted by FAPESP (Processes No. 2015/09008-0 and No. 2013/05987-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and CNPq. The authors are also grateful for the technical assistance on TEM, SEM analysis and sample preparation from Laboratory of Structure Characterization of Federal University of São Carlos (UFSCar).

Author information

Authors and Affiliations

Authors

Contributions

WW, GYK, CB, CSK, and WJB designed the study. WW, RS, and SS fabricated the samples. WW and GYK characterized the samples. All authors contributed on data analysis, discussing and/or manuscript writing.

Corresponding author

Correspondence to Witor Wolf.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, W., Koga, G.Y., Schulz, R. et al. Wear and Corrosion Performance of Al-Cu-Fe-(Cr) Quasicrystalline Coatings Produced by HVOF. J Therm Spray Tech 29, 1195–1207 (2020). https://doi.org/10.1007/s11666-020-01053-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01053-2

Keywords

Navigation