Skip to main content

Advertisement

Log in

Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Deposition behavior and deposition efficiency were investigated for several aluminum–alumina mixture compositions sprayed by cold spray. An increase in deposition efficiency was observed. Three theories postulated in the literature, explaining this increase in deposition efficiency, were investigated and assessed. Through finite element analysis, the interaction between a ceramic particle peening an impacting aluminum particle was found to be a possible mechanism to increase the deposition efficiency of the aluminum particle, but a probability analysis demonstrated that this peening event is too unlikely to contribute to the increment in deposition efficiency observed. The presence of asperities at the substrate and deposited layers was confirmed by a single-layer deposition efficiency measurement and proved to be a major mechanism in the increment of deposition efficiency of the studied mixtures. Finally, oxide removal produced by the impact of ceramic particles on substrate and deposited layers was evaluated as the complement of the other effects and found to also play a major role in increasing the deposition efficiency. It was found that the coatings retained approximately half of the feedstock powder alumina content. Hardness tests have shown a steady increase with the coating alumina content. Dry wear tests have revealed no improvement in wear resistance in samples with an alumina content lower than 22 wt.% compared to pure aluminum coatings. Adhesion strength showed a steady improvement with increasing alumina content in the feedstock powder from 18.5 MPa for pure aluminum coatings to values above 70 MPa for the ones sprayed with the highest feedstock powder alumina content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. J.R. Tinklepaugh, Cermets, Reinhold Publishing Corporation, New York, 1960

    Google Scholar 

  2. J.L. Ellis and C.G. Goetzel, Cermets, “ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, ASM International, Geauga County, 1990, p 1328.

  3. C.P. Bergmann and J. Vicenzi, “Protection against Erosive Wear Using Thermal Sprayed Cermet”, Climate Change 2013—The Physical Science Basis, Springer, Berlin, 2011

    Book  Google Scholar 

  4. A. Evans, C. San Marchi, and A. Mortensen, Metal Matrix Composites in Industry: An Introduction and a Survey, Kluwer Academic, Dordrecht, 2003

    Book  Google Scholar 

  5. R.C.C. Dykhuizen and M.F.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  Google Scholar 

  6. A.O. Tokarev, Structure of Aluminum Powder Coatings Prepared by Cold Gasdynamic Spraying, Met. Sci. Heat Treat., 1996, 38(3), p 136-139

    Article  Google Scholar 

  7. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, “Method and Device for Coating,” Patent EP0484533 B1, 1995.

  8. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  9. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808

    Article  Google Scholar 

  10. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227

    Article  Google Scholar 

  11. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 368(1-2), p 222-230

    Article  Google Scholar 

  12. T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379

    Article  Google Scholar 

  13. R.C.C. Dykhuizen, M.F.F. Smith, D.L.L. Gilmore, R.A.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564

    Article  Google Scholar 

  14. T. Samson, D. MacDonald, R. Fernández, and B. Jodoin, Effect of Pulsed Waterjet Surface Preparation on the Adhesion Strength of Cold Gas Dynamic Sprayed Aluminum Coatings, J. Therm. Spray Technol., 2015, 24(6), p 984-993

    Article  Google Scholar 

  15. H. Koivuluoto and P. Vuoristo, Structural Analysis of Cold-Sprayed Nickel-Based Metallic and Metallic–Ceramic Coatings, J. Therm. Spray Technol., 2010, 19(5), p 975-989

    Article  Google Scholar 

  16. E. Irissou, J.G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16(5-6), p 661-668

    Article  Google Scholar 

  17. A. Sova, A. Papyrin, and I. Smurov, Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray, J. Therm. Spray Technol., 2009, 18(4), p 633-641

    Article  Google Scholar 

  18. Q. Wang, K. Spencer, N. Birbilis, and M.X. Zhang, The Influence of Ceramic Particles on Bond Strength of Cold Spray Composite Coatings on AZ91 Alloy Substrate, Surf. Coat. Technol., 2010, 205(1), p 50-56

    Article  Google Scholar 

  19. A. Shkodkin, A. Kashirin, O. Klyuev, and T. Buzdygar, Metal Particle Deposition Stimulation by Surface Abrasive Treatment in Gas Dynamic Spraying, J. Therm. Spray Technol., 2006, 15(3), p 382-386

    Article  Google Scholar 

  20. I. Finnie and D.H. McFadden, On the Velocity Dependence of the Erosion of Ductile Metals by Solid Particles at Low Angles of Incidence, Wear, 1978, 48(1), p 181-190

    Article  Google Scholar 

  21. A. Sova, V.F. Kosarev, A. Papyrin, and I. Smurov, Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal–Ceramic Coatings, J. Therm. Spray Technol., 2011, 20(1-2), p 285-291

    Article  Google Scholar 

  22. Y.X. Wang, H. Yang, G. Lim, and Y. Li, Glass Formation Enhanced by Oxygen in Binary Zr-Cu System, Scr. Mater., 2010, 62(9), p 682-685

    Article  Google Scholar 

  23. Y. Wang, B. Normand, N. Mary, M. Yu, and H. Liao, Effects of Ceramic Particle Size on Microstructure and the Corrosion Behavior of Cold Sprayed SiCp/Al 5056 Composite Coatings, Surf. Coat. Technol., 2017, 315, p 314-325

    Article  Google Scholar 

  24. R.S. Lima, J. Karthikeyan, C.M. Kay, J. Lindemann, and C.C. Berndt, Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings, Thin Solid Films, 2002, 416(1-2), p 129-135

    Article  Google Scholar 

  25. F.S. da Silva, J. Bedoya, S. Dosta, N. Cinca, I.G. Cano, J.M. Guilemany, and A.V. Benedetti, Corrosion Characteristics of Cold Gas Spray Coatings of Reinforced Aluminum Deposited onto Carbon Steel, Corros. Sci., 2017, 114, p 57-71

    Article  Google Scholar 

  26. E. Sansoucy, P. Marcoux, L. Ajdelsztajn, and B. Jodoin, Properties of SiC-Reinforced Aluminum Alloy Coatings Produced by the Cold Gas Dynamic Spraying Process, Surf. Coat. Technol., 2008, 202(16), p 3988-3996

    Article  Google Scholar 

  27. W.Y. Li, G. Zhang, H.L. Liao, and C. Coddet, Characterizations of Cold Sprayed TiN Particle Reinforced Al2319 Composite Coating, J. Mater. Process. Technol., 2008, 202(1-3), p 508-513

    Article  Google Scholar 

  28. S.V. Klinkov and V.F. Kosarev, Cold Spraying Activation Using an Abrasive Admixture, J. Therm. Spray Technol., 2012, 21(5), p 1046-1053

    Article  Google Scholar 

  29. G.L. Eesley, A. Elmoursi, and N. Patel, Thermal Properties of Kinetic Spray Al-SiC Metal-Matrix Composite, J. Mater. Res., 2003, 18(4), p 855-860

    Article  Google Scholar 

  30. K.S. Al-Hamdani, J.W. Murray, T. Hussain, A. Kennedy, and A.T. Clare, Cold Sprayed Metal–Ceramic Coatings Using Satellited Powders, Mater. Lett., 2017, 198, p 184-187

    Article  Google Scholar 

  31. B. Aldwell, S. Yin, K.A. McDonnell, D. Trimble, T. Hussain, and R. Lupoi, A Novel Method for Metal–Diamond Composite Coating Deposition with Cold Spray and Formation Mechanism, Scr. Mater., 2016, 115, p 10-13

    Article  Google Scholar 

  32. Y.T.R. Lee, H. Ashrafizadeh, G. Fisher, and A. McDonald, Effect of Type of Reinforcing Particles on the Deposition Efficiency and Wear Resistance of Low-Pressure Cold-Sprayed Metal Matrix Composite Coatings, Surf. Coat. Technol., 2017, 324, p 190-200

    Article  Google Scholar 

  33. P.E. Leger, M. Sennour, F. Delloro, F. Borit, A. Debray, F. Gaslain, M. Jeandin, and M. Ducos, Multiscale Experimental and Numerical Approach to the Powder Particle Shape Effect on Al-Al2O3 Coating Build-Up, J. Therm. Spray Technol., 2017, 26(7), p 1445-1460

    Article  Google Scholar 

  34. M. Yu, W.-Y.Y. Li, X.K.K. Suo, and H.L.L. Liao, Effects of Gas Temperature and Ceramic Particle Content on Microstructure and Microhardness of Cold Sprayed SiCp/Al 5056 Composite Coatings, Surf. Coat. Technol., 2013, 220, p 102-106

    Article  Google Scholar 

  35. M. Yu, X.K.K. Suo, W.Y.Y. Li, Y.Y.Y. Wang, and H.L.L. Liao, Microstructure, Mechanical Property and Wear Performance of Cold Sprayed Al5056/SiCp Composite Coatings: Effect of Reinforcement Content, Appl. Surf. Sci., 2014, 289, p 188-196

    Article  Google Scholar 

  36. C.J. Huang and W.Y. Li, Strengthening Mechanism and Metal/Ceramic Bonding Interface of Cold Sprayed TiN p/Al5356 Deposits, Surf. Eng., 2016, 32(9), p 663-669

    Article  Google Scholar 

  37. K. Spencer, D.M. Fabijanic, and M.X. Zhang, The Use of Al-Al2O3 Cold Spray Coatings to Improve the Surface Properties of Magnesium Alloys, Surf. Coat. Technol., 2009, 204(3), p 336-344

    Article  Google Scholar 

  38. H.Y. Lee, Y.H. Yu, Y.C. Lee, Y.P. Hong, and K.H. Ko, Cold Spray of SiC and Al2O3 with Soft Metal Incorporation: A Technical Contribution, J. Therm. Spray Technol., 2004, 13(2), p 184-189

    Article  Google Scholar 

  39. C. Feng, V. Guipont, M. Jeandin, O. Amsellem, F. Pauchet, R. Saenger, S. Bucher, and C. Iacob, B4C/Ni Composite Coatings Prepared by Cold Spray of Blended or CVD-Coated Powders, J. Therm. Spray Technol., 2012, 21(3-4), p 561-570

    Article  Google Scholar 

  40. J.M. Shockley, S. Descartes, P. Vo, E. Irissou, and R.R. Chromik, The Influence of Al2O3 Particle Morphology on the Coating Formation and Dry Sliding Wear Behavior of Cold Sprayed Al-Al2O3 Composites, Surf. Coatings Technol., 2015, 270, p 324-333

    Article  Google Scholar 

  41. R.G. Maev and E. Leshchinsky, “Low Pressure Gas Dynamic Spray: Shear Localization during Particle Shock Consolidation,” Thermal Spray 2006: Science, Innovation and Application, 2006.

  42. R.G. Maev and V. Leshchynsky, Air Gas Dynamic Spraying of Powder Mixtures: Theory and Application, J. Therm. Spray Technol., 2006, 15(2), p 198-205

    Article  Google Scholar 

  43. I. Finnie, Erosion of Surfaces by Solid Particles, Wear, 1960, 3(2), p 87-103

    Article  Google Scholar 

  44. J.H. Neilson and A. Gilchrist, Erosion by a Stream of Solid Particles, Wear, 1968, 11(2), p 111-122

    Article  Google Scholar 

  45. Y. Xie, M.P. Planche, R. Raoelison, P. Hervé, X. Suo, P. He, and H. Liao, Investigation on the Influence of Particle Preheating Temperature on Bonding of Cold-Sprayed Nickel Coatings, Surf. Coat. Technol., 2017, 318, p 99-105

    Article  Google Scholar 

  46. F. Gärtner, C. Borchers, T. Stoltenhoff, H. Kreye, and H. Assadi, Numerical and Microstructural Investigations of the Bonding Mechanisms in Cold Spraying, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5–8, 2003 (Orlando, FL), ASM International, 2003, vol 1, p 845, vol 2, p 864.

  47. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    Article  Google Scholar 

  48. J.G.A. Bitter, A Study of Erosion Phenomena, Wear, 1963, 6(3), p 169-190

    Article  Google Scholar 

  49. X. Wang, F. Feng, M.A. Klecka, M.D. Mordasky, J.K. Garofano, T. El-Wardany, A. Nardi, and V.K. Champagne, Characterization and Modeling of the Bonding Process in Cold Spray Additive Manufacturing, Addit. Manuf., 2015, 8, p 149-162

    Article  Google Scholar 

  50. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  Google Scholar 

  51. F. Meng, H. Aydin, S. Yue, and J. Song, The Effects of Contact Conditions on the Onset of Shear Instability in Cold-Spray, J. Therm. Spray Technol., 2015, 24(4), p 711-719

    Article  Google Scholar 

  52. X. Bin Wang, Adiabatic Shear Localization for Steels Based on Johnson–Cook Model and Second- and Fourth-Order Gradient Plasticity Models, J. Iron Steel Res. Int., 2007, 14(5), p 56-61

    Article  Google Scholar 

  53. Z.S. Liu, S. Swaddiwudhipong, and M.J. Islam, Perforation of Steel and Aluminum Targets Using a Modified Johnson-Cook Material Model, Nucl. Eng. Des., 2012, 250, p 108-115

    Article  Google Scholar 

  54. Y. Cormier, P. Dupuis, B. Jodoin, and A. Ghaei, Finite Element Analysis and Failure Mode Characterization of Pyramidal Fin Arrays Produced by Masked Cold Gas Dynamic Spray, J. Therm. Spray Technol., 2015, 24(8), p 1549-1565

    Article  Google Scholar 

  55. P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2010, 19(3), p 620-634

    Article  Google Scholar 

  56. M. Saleh, V. Luzin, and K. Spencer, Analysis of the Residual Stress and Bonding Mechanism in the Cold Spray Technique Using Experimental and Numerical Methods, Surf. Coat. Technol., 2014, 252, p 15-28

    Article  Google Scholar 

  57. A. Papyrin, Cold Spray Technology. Advanced Materials and Processing, Elsevier, Amsterdam, 2001

    Google Scholar 

  58. J.G. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 619-626

    Article  Google Scholar 

  59. K.J. Hodder, J.A. Nychka, and A.G. McDonald, Comparison of 10 Μm and 20 Nm Al-Al2O3 Metal Matrix Composite Coatings Fabricated by Low-Pressure Cold Gas Dynamic Spraying, J. Therm. Spray Technol., 2014, 23(5), p 839-848

    Article  Google Scholar 

  60. J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee, Measurement of Particle Velocity and Characterization of Deposition in Aluminum Alloy Kinetic Spraying Process, Appl. Surf. Sci., 2005, 252(5), p 1368-1377

    Article  Google Scholar 

  61. K.J. Hodder, H. Izadi, A.G. McDonald, and A.P. Gerlich, Fabrication of Aluminum–Alumina Metal Matrix Composites via Cold Gas Dynamic Spraying at Low Pressure Followed by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 556, p 114-121

    Article  Google Scholar 

  62. N.M. Melendez, V.V. Narulkar, G.A. Fisher, and A.G. McDonald, Effect of Reinforcing Particles on the Wear Rate of Low-Pressure Cold-Sprayed WC-Based MMC Coatings, Wear, 2013, 306(1-2), p 185-195

    Article  Google Scholar 

  63. S.A. Alidokht, P. Manimunda, P. Vo, S. Yue, and R.R. Chromik, Cold Spray Deposition of a Ni-WC Composite Coating and Its Dry Sliding Wear Behavior, Surf. Coat. Technol., 2016, 308, p 424-434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Fernandez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, R., Jodoin, B. Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content. J Therm Spray Tech 27, 603–623 (2018). https://doi.org/10.1007/s11666-018-0702-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0702-6

Keywords

Navigation