Skip to main content
Log in

Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings

  • Review
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic–kinetic modeling, the vast potential of which has been demonstrated in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G.W. Goward, Progress in Coatings for Gas Turbine Airfoils, Surf. Coat. Technol., 1998, 108-109(1-3), p 73-79

    Article  Google Scholar 

  2. B. Gleeson, Thermal Barrier Coatings for Aeroengine Applications, J. Propuls. Power, 2006, 22-2, p 375-383

    Article  Google Scholar 

  3. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46, p 505-553

    Article  Google Scholar 

  4. W.J. Quadakkers, A.K. Tyagi, D. Clemens, R. Anton, ans L. Singheiser, in The Significance of Bond Coat Oxidation for the Life of TBC Coatings, Elevated Temperature Coatings Science and Technology III, eds. by J.M. Hampikian, N.B. Dahotre, The Minerals, Metals & Materials Society (TMS), Warrendale, Pennsylvania, 1999, p 119-130

  5. P. Fox and G.J. Tatlock, Effect of Tantalum Additions on Oxidation of Overlay Coated Superalloys, Mater. Sci. Technol., 1989, 5, p 816

    Article  Google Scholar 

  6. N. Czech, F. Schmitz, and W. Stamm, Improvement of MCrAlY coatings by addition of rhenium, Surf. Coat. Technol., 1994, 68-69, p 17

    Article  Google Scholar 

  7. U. Täck, The Influence of Cobalt and Rhenium on the Behaviour of MCrAlY Coatings (Ph.D. thesis) Tech. Univ. Freiberg, (2004) 25, 151, 169

  8. ASM Binary Alloy Phase Diagrams, ASM International, 1996

  9. C. Lechner and J. Seume, Ed., Stationaere Gasturbinen, Springer, Berlin, 2003, p 749

    Google Scholar 

  10. D.R.G. Achar, R. Munoz-Arroyo, L. Singheiser, and W.J. Quadakkers, Modelling of Phase Equilibria in MCrAlY Coating Systems, Surf. Coat. Technol., 2004, 187, p 272-283

    Article  Google Scholar 

  11. R. Muñoz-Arroyo, D. Clemens, F. Tietz, R. Anton, J. Quadakkers, and L. Singheiser, Influence of Composition and Phase Distribution on the Oxidation Behaviour of NiCoCrAlY Alloys, Mater. Sci. Forum, 2001, 369-372, p 165

    Article  Google Scholar 

  12. J. Toscano, A. Gil, T. Hüttel, E. Wessel, D. Naumenko, L. Singheiser, and W.J. Quadakkers, Temperature Dependence of Phase Relationships in Different Types of MCrAlY-Coatings, Surf. Coat. Technol., 2007, 202, p 603-607

    Article  Google Scholar 

  13. A. Taylor and R. W. Floyd: The Constitution of Nickel-Rich Alloys of the Nickel-Chromium-Alumium System, J. Inst. Metals, 81, 45 (1952-1953)

  14. R. Munoz-Arroyo, Ph.D. thesis, University of Madrid, Spain (2003)

  15. B. Jansson, M. Schalin, M. Selleby, and B. Sundman, in The ThermoCalc database system, eds. by C.W. Bale, G.A. Irons, Computer Software in Chemical and Extractive Metallurgy, The Metallurgical Society of Canadian Institute of Mining, Metallurgy and Petroleum, Quebec, 1993, p 57

  16. R. Pillai, W.G. Sloof, A. Chyrkin, L. Singheiser, and W.J. Quadakkers, A New Computational Approach for Modelling the Microstructural Evolution And Residual Lifetime Assessment of MCrAlY Coatings, Mater. High Temp., 2015, 32(1-2), p 57-67

    Article  Google Scholar 

  17. P. Song, Influence of Material and Testing Parameters on the Lifetime of TBC Systems with MCrAlY and NiPtAl Bondcoats, Ph.D. Thesis, RWTH Aachen University (2011)

  18. A. Chyrkin, unpublished results, Forschungszentrum Jülich GmbH (2012), presented at International Conference on Metallurgical Coatings and Thin Films (ICMCTF 2012) San Diego, CA, USA, 23 Apr 2012, Presentation Title: Compositional and Microstructural Changes in MCrAlY Coatings Due to Interdiffusion with the Base Material

  19. A. Borgenstam, A. Engstrom, L. Hoglund, and J. Agren, J. Phase Equilibr., 2000, 21, p 269

    Article  Google Scholar 

  20. R. Anton, Untersuchungen zu den Versagensmechanismen von Wärmedämmschicht-Systemen im Temperaturbereich von 900 °C bis 1050 °C bei zyklischer Temperaturbelastung, Ph.D. Thesis, University of Aachen (2001), pp. 37-54

  21. D. Shifler, Meeting Materials Needs in Extreme Naval Corrosive and Oxidative Environments, Mater. High Temp., 2015, 32(1-2), p 148-159

    Article  Google Scholar 

  22. C. Duhamel, M. Chieux, R. Molins, L. Remy, D. Monceau, A. Vande Put, and J.Y. Guedouc, Thermal Cycling Behaviour of Thermal Barrier Coating Systems Based on First- and Fourth Generation Ni-Based Superalloys, Mater. High Temp., 2012, 29(2), p 136-144

    Article  Google Scholar 

  23. J. Toscano, R. Vaßen, A. Gil, M. Subanovic, D. Naumenko, L. Singheiser, and W.J. Quadakkers, Parameters Affecting TGO Growth and Adherence on MCrAlY-Bond Coats for TBC’s, Surf. Coat. Technol., 2006, 201, p 3906-3910

    Article  Google Scholar 

  24. W. Nowak, High Temperature Corrosion of Alloys and Coatings in Gas-Turbines Fired with Hydrogen-Rich Syngas Fuels, Ph.D. Thesis, RWTH Aachen University (2014)

  25. J. Toscano, Influence of Composition and Processing on the Oxidation Behavior of MCrAlY-Coatings for TBC Applications, Ph.D. Thesis, RWTH Aachen University (2008)

  26. H. Echsler, D. Renusch, and M. Schütze, Bond Coat Oxidation and its Significance for Life Expectancy of Thermal Barrier Coatings, Mater. Sci. Technol., 2004, 20, p 307-317

    Article  Google Scholar 

  27. D. Naumenko, V. Shemet, L. Singheiser, and W.J. Quadakkers, Failure Mechanisms of Thermal Barrier Coatings on MCrAlY-Type Bondcoats Associated with the Formation of the Thermally Grown Oxide, J. Mater. Sci., 2009, 44(7), p 1687-1703

    Article  Google Scholar 

  28. D. Naumenko, B.A. Pint, and W.J. Quadakkers, Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer, Oxid. Met., 2016, 86(1), p 1-43

    Article  Google Scholar 

  29. P.K. Wright and A.G. Evans, Mechanisms Governing the Performance of Thermal Barrier Coatings, Curr. Opin. Solid State Mater. Sci., 1999, 4, p 255-265

    Article  Google Scholar 

  30. H.E. Evans and M.P. Taylor, Diffusion Cells and Chemical Failure of MCrAlY Bond Coats in Thermal-Barrier Coating Systems, Oxid. Met., 2001, 55(1/2), p 17-34

    Article  Google Scholar 

  31. M. Subanovic, D. Sebold, R. Vassen, E. Wessel, D. Naumenko, L. Singheiser, and W.J. Quadakkers, Effect of Manufacturing Related Parameters on Oxidation Properties of MCrAlY Bondcoats, Mater. Corros., 2008, 59(6), p 463-470

    Article  Google Scholar 

  32. T.B. Massalski, ASM Binary Phase Diagrams, ASM International, Materials Park, 1996

    Google Scholar 

  33. A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser, and W.J. Quadakkers, The Effect of Surface Condition on the Oxidation Behaviour of MCrAlY Coatings, Surf. Coat. Technol., 2006, 201, p 3824-3828

    Article  Google Scholar 

  34. P. Song, D. Naumenko, R. Vassen, L. Singheiser, and W.J. Quadakkers, Effect of Oxygen Content in NiCoCrAlY Bondcoat On The Lifetimes of EB-PVD and APS Thermal Barrier Coatings, Surf. Coat. Technol., 2013, 221, p 207-213

    Article  Google Scholar 

  35. M. Subanovic, Einfluss der Bondcoatzusammensetzung und Herstellungsparameter auf die Lebensdauer von Wärmedämmschichten bei zyklischer Temperaturbelastung, Ph.D. Thesis RWTH Aachen University (2008)

  36. I. Keller, D. Naumenko, W.J. Quadakkers, R. Vaßen, and L. Singheiser, Influence of Vacuum Heat Treatment Parameters on the Surface Composition of MCrAlY Coatings, Surf. Coat. Technol., 2013, 215, p 24-29

    Article  Google Scholar 

  37. A. Gil, D. Naumenko, R. Vassen, J. Toscano, M. Subanovic, L. Singheiser, and W.J. Quadakkers, Y-rich Oxide Distribution in Plasma Sprayed MCrAlY-Coatings Studied by SEM with a Cathodoluminescence Detector and Raman Spectroscopy, Surf. Coat. Technol., 2009, 204, p 531-538

    Article  Google Scholar 

  38. M. Ahrens, R. Vassen, and D. Stover, Surf. Coat. Technol., 2002, 161, p 26-35

    Article  Google Scholar 

  39. J.A. Haynes, K.A. Unocic, and B.A. Pint, Effect of Water Vapor on the 1100 C Oxidation Behavior of Plasma Sprayed TBCs with HVOF NiCoCrAlX Bond Coatings, Surf. Coat. Technol., 2013, 215, p 39-45

    Article  Google Scholar 

  40. R. Eriksson, S. Sjöström, H. Brodin, S. Johansson, L. Östergren, and X.-H. Li, TBC Bond Coat–Top Coat Interface Roughness: Influence on Fatigue Life and Modelling Aspects, Surf. Coat. Technol., 2013, 236, p 230-238

    Article  Google Scholar 

  41. J.A. Haynes, K.A. Unocic, M.J. Lance, and B.A. Pint, Impact of Superalloy Composition, Bondcoat Roughness and Water Vapor on TBC Lifetime with HVOF NiCoCrAlYHfSi bond coatings, Surf. Coat. Technol., 2013, 237, p 65-70

    Article  Google Scholar 

  42. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrieer Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review, J. Therm. Spray Technol., 2008, 17(2), p 199-213

    Article  Google Scholar 

  43. B. Rajasekaran, G. Mauer, and R. Vassen, Enhanced Characteristics of HVOF-Sprayed MCrAlY Bond Coats for TBC Applications, J. Therm. Spray Technol., 2011, 20(6), p 1209-1216

    Article  Google Scholar 

  44. W. Nowak, D. Naumenko, G. Mor, F. Mor, D.E. Mack, R. Vassen, L. Singheiser, and W.J. Quadakkers, Effect of Processing Parameters on MCrAlY Bondcoat Roughness and Lifetime of APS–TBC Systems, Surf. Coat. Technol., 2014, 260, p 82-89

    Article  Google Scholar 

  45. M.A. Helminiak, N.M. Yanar, F.S. Pettit, T.A. Taylor, and G.H. Meier, The Behaviour of High-Purity, Low-Density Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Tech., 2009, 204, p 793-796

    Article  Google Scholar 

  46. G. Mauer, D. Sebold, and R. Vaßen, MCrAlY Bondcoats by High-Velocity Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2014, 23(1-2), p 140-146

    Article  Google Scholar 

  47. G. Mauer, D. Sebold, R. Vassen, O. Guillon, E. Hejrani, D. Naumenko, and W.J. Quadakkers, Impact of Processing Conditions and Feedstock Characteristics on Thermally Sprayed MCrAlY Bondcoat Properties, Surf. Coat. Technol., 2016. https://doi.org/10.1016/j.surfcoat.2016.08.079

    Google Scholar 

  48. E. Hejrani, D. Sebold, W.J. Nowak, G. Mauer, D. Naumenko, R. Vaßen, and W.J. Quadakkers, Isothermal and Cyclic Oxidation Behavior of Free Standing MCrAlY Coatings Manufactured by High-Velocity Atmospheric Plasma Spraying, Surf. Coat. Technol., 2017, 313, p 191-201

    Article  Google Scholar 

  49. T. Huang, J. Bergholz, G. Mauer, R. Vassen, D. Naumenko, and W.J. Quadakkers, Effect of Test Atmosphere Composition on High-Temperature Oxidation Behaviour of CoNiCrAlY Coatings Produced from Conventional and ODS Powders, Mater. High Temp., 2017. https://doi.org/10.1080/09603409.2017.1389422

    Google Scholar 

  50. P. Richer, M. Yandouzi, L. Beauvais, and B. Jodoin, Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2010, 204(24), p 3962-3974

    Article  Google Scholar 

  51. Yong Li, Chang-Jiu Li, Qiang Zhang, Lu-Kuo Xing, and Guan-Jun Yang, Effect of Chemical Compositions and Surface Morphologies of MCrAlY Coating on Its Isothermal Oxidation Behavior, J. Therm. Spray Technol., 2011, 20(1), p 121-131

    Article  Google Scholar 

  52. Y. Zhang, Electrodeposited MCrAlY Coatings for Gas Turbine Engine Applications, JOM, 2015, 67(11), p 2599-2607

    Article  Google Scholar 

  53. G. Wydra et al., Method to produce a slip layer, which is resistant to corrosion and oxidation, United States Patent N0.: US 6,440,499 B1, Date of Patent: Aug. 27, 2002

  54. Hasz et al. Method for Applying a high-temperature bondcoat on a metal substrate and related compositions and articles, United States Patent N0.2 US 6,497,758 B1, Date of Patent: Dec. 24, 2002

  55. L. Ajdelsztajn, F. Tang, J.M. Schoenung, G.E. Kim, and V. Provenzano, Synthesis and Oxidation Behavior of Nanocrystalline MCrAlY Bond Coatings, J. Therm. Spray Technol., 2005, 14(1), p 23-30

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the following colleagues in the Institute for Energy and Climate Research of the Forschungszentrum Jülich for assistance in the coatings procurement, experimental and analytical work, and fruitful discussions: H. Cosler, A. Kick, E. Wessel, D. Grüner, V. Gutzeit, M. Subanovic, J. Toscano, I. Keller, P. Song, W. Nowak, T. Huang, E. Hejrani, A. Jalowicka, R. Vassen, D. Mack, G. Mauer, D. Sebold, J. Bergholz. The authors acknowledge partial funding of this work by the German Research Foundation (DFG) under the Grant No. NA-615-2 and the European Union (R&D Project H2-IGCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Naumenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumenko, D., Pillai, R., Chyrkin, A. et al. Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings. J Therm Spray Tech 26, 1743–1757 (2017). https://doi.org/10.1007/s11666-017-0649-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0649-z

Keywords

Navigation