Skip to main content
Log in

Failure Behavior of Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings Under Three-Point Bending Test via Acoustic Emission Technique

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this paper, the failure behavior of plasma-sprayed yttria-stabilized zirconia thermal barrier coatings fabricated by atmospheric plasma spraying (APS-TBCs) under three-point bending (3PB) test has been characterized via acoustic emission (AE) technique. Linear positioning method has been adopted to monitor dynamic failure process of the APS-TBCs under 3PB test. The investigation results indicate that the variation of AE parameters (AE event counts, amplitudes and AE energy) corresponds well with the change of stress–strain curve of the loading processes. The failure mechanism was analyzed based on the characteristics of AE parameters. The distribution of frequency of crack propagation has been obtained. The AE signals came from two aspects: i.e., plastic deformation of substrates, initiation and propagation of the cracks in the coatings. The AE analysis combined with cross-sectional observation has indicated that many critical cracks initiate at the surface of the top-coat. And some main cracks tend to propagate toward the substrate/bond-coat interface. The actual failure mechanism of the APS-TBCs under 3PB test is attributed to the debonding of metallic coating from the substrates and the propagation of the horizontal crack along the substrate/bond-coat interface under the action of flexural moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Science, 2002, 296(5566), p 280-284

    Article  Google Scholar 

  2. H.P. John, Science, 2009, 326(5956), p 1068-1069

    Article  Google Scholar 

  3. A.M. Kristen, H. Berit, and A.C. Emily, PNAS, 2011, 108(14), p 5480-5487

    Article  Google Scholar 

  4. L. Yang, Y.C. Zhou, and C. Lu, Acta Mater., 2011, 59, p 6519-6529

    Article  Google Scholar 

  5. S. Uwe, L. Christoph, F. Klaus, P. Manfred, S.B. Bilge, and L. Odile, Aerosp. Sci. Technol., 2003, 7, p 73-80

    Article  Google Scholar 

  6. D.R. Clarke, M. Oechsner, and N.P. Padture, MRS Bull., 2012, 37(10), p 891-902

    Article  Google Scholar 

  7. C.G. Levi, J.W. Hutchinson, M.-H. Vidal-Setif, and C.A. Johnson, MRS Bull., 2012, 37(10), p 932-941

    Article  Google Scholar 

  8. A.G. Evans, D.R. Clarke, and C.G. Levi, J. Eur. Ceram. Soc., 2008, 28(7), p 1405-1419

    Article  Google Scholar 

  9. S.W. Myoung, Z. Lu, Y.G. Jung, B.K. Jang, and U. Paik, Surf. Coat. Technol., 2014, 260, p 63-67

    Article  Google Scholar 

  10. L.Y. Ni, C. Liu, H. Huang, and C.G. Zhou, J. Therm. Spray Technol., 2011, 20(5), p 1133-1138

    Article  Google Scholar 

  11. K. Ma and J.M. Schoenung, Philos. Mag. Lett., 2010, 90(10), p 739-751

    Article  Google Scholar 

  12. M. Rudolphi, D. Renusch, H.E. Zschau, and M. Schuetze, Mater. High Temp., 2009, 26(3), p 325-329

    Article  Google Scholar 

  13. A. Hospach, G. Mauer, R. Vassen, and D. Stoever, J. Therm. Spray Technol., 2011, 20(1–2), p 116-120

    Article  Google Scholar 

  14. J.B. Song, X.F. Zhang, C.M. Deng, M. Liu, K.S. Zhou, and X. Tong, Ceram. Int., 2016, 42(2), p 3163-3169

    Article  Google Scholar 

  15. S. Rezanka, G. Mauer, and R. Vassen, J. Therm. Spray Technol., 2014, 23(1–2), p 182-189

    Article  Google Scholar 

  16. M. Goral, S. Kotowski, A. Nowotnik, M. Pytel, and M. Drajewicz, J. Sieniawski. Surf. Coat. Technol., 2013, 237, p 51-55

    Article  Google Scholar 

  17. Z.H. Xu, Z.K. Wang, G.H. Huang, R.D. Mu, and L.M. He, J. Alloys Compd, 2015, 651, p 445-453

    Article  Google Scholar 

  18. A. Ajay, V.S. Raja, G. Sivakumar, and S.V. Joshi, Corros. Sci., 2015, 98, p 271-279

    Article  Google Scholar 

  19. J. Chen, E.H. Jordan, A.B. Harris, M. Gell, and J. Roth, J. Therm. Spray Technol., 2015, 24(6), p 895–906

    Article  Google Scholar 

  20. Y.X. Zhao, L. Wang, J.S. Yang, D.C. Li, X.H. Zhong, H.Y. Zhao, F. Shao, and S.Y. Tao, J. Therm. Spray Technol., 2015, 24(3), p 338-347

    Article  Google Scholar 

  21. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Prog. Mater Sci., 2001, 46(5), p 505-553

    Article  Google Scholar 

  22. X.Q. Cao, R. Vassen, and D. Stoever, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10

    Article  Google Scholar 

  23. A. Rabiei and A.G. Evans, Acta Mater., 2000, 48(15), p 3963-3976

    Article  Google Scholar 

  24. L. Wang, D.C. Li, J.S. Yang, F. Shao, X.H. Zhong, H.Y. Zhao, K. Yang, S.Y. Tao, and Y. Wang, J. Eur. Ceram. Soc., 2016, 36(6), p 1313-1331

    Article  Google Scholar 

  25. A.R. Krause and X. Li, N.P Padture, Scr. Mater., 2016, 112, p 118-122

    Article  Google Scholar 

  26. L.C. Su, X. Chen, and T.J. Wang, Surf. Coat. Technol., 2015, 280, p 100-109

    Article  Google Scholar 

  27. S. Wei, F.C. Wang, Q.B. Fan, and Z. Ma, Surf. Coat. Technol., 2013, 217, p 39-45

    Article  Google Scholar 

  28. L. Wang, J.S. Yang, J.X. Ni, C.G. Liu, X.H. Zhong, F. Shao, H.Y. Zhao, S.Y. Tao, and Y. Wang, Surf. Coat. Technol., 2016, 285, p 98-112

    Article  Google Scholar 

  29. D. Liu, S.T. Kyaw, P.E.J. Flewitt, M. Seraffon, N.J. Simms, M. Pavier, and I.A. Jones, Mater. Sci. Eng., A, 2014, 606, p 117-126

    Article  Google Scholar 

  30. F.M. Ranjbar, J. Absi, G. Mariaux, and S. Shahidi, J. Therm. Spray Technol., 2010, 19(5), p 1054-1061

    Article  Google Scholar 

  31. A.B. Vakhtin, K.A. Peterson, D.J. Kane, E.H. Jordan, G. Hansen, and M. Teicholz, in Proceedings of the ASME Turbo Expo, vol. 1 (2007), p 275–279

  32. D. Liu, O. Lord, O. Stevens, and P.E.J. Flewitt, Acta Mater., 2013, 61(1), p 12-21

    Article  Google Scholar 

  33. P.S. Anderson, X. Wang, and P. Xiao, Surf. Coat. Technol., 2004, 185(1), p 106-119

    Article  Google Scholar 

  34. H. Huang, C. Liu, L.Y. Ni, and C.G. Zhou, Rare Metal., 2011, 30(1), p 643-646

    Article  Google Scholar 

  35. G.J. Gomez, A. Rico, M.M.A. Garrido, C.J. Munez, P. Poza, and V. Utrilla, Surf. Coat. Technol., 2009, 204(6–7), p 812-815

    Article  Google Scholar 

  36. F. Yang and P. Xiao, Int. J. Appl. Ceram. Technol., 2009, 6(3), p 381-399

    Article  Google Scholar 

  37. W. Zhu, L. Yang, J.W. Guo, Y.C. Zhou, and C. Lu, Int. J. Plast, 2015, 64, p 76-87

    Article  Google Scholar 

  38. X.Q. Ma, S. Cho, and M. Takemoto, Surf. Coat. Technol., 2001, 139, p 55-62

    Article  Google Scholar 

  39. N. Daniel, R. Birgit, S. Birgit, and R. Vaßen, Adv. Eng. Mater., 2012, 14(9), p 790-794

    Article  Google Scholar 

  40. I. Kaita, K. Hitoshi, A. Hiroshi, K. Seiji, and E. Manabu, Sci. Technol. Adv. Mater., 2014, 15, p 035007

    Article  Google Scholar 

  41. L. Yang, H.S. Kang, Y.C. Zhou, and C. Lu, Surf. Coat. Technol., 2015, 264, p 97-104

    Article  Google Scholar 

  42. I. Kaita, K. Hitoshi, A. Hiroshi, K. Seiji, and E. Manabu, J. Therm. Spray Technol., 2015, 24(5), p 848-856

    Article  Google Scholar 

  43. L. Yang, Y.C. Zhou, W.G. Mao, and C. Lu, Appl. Phys. Lett., 2008, 93, p 231906

    Article  Google Scholar 

  44. L. Yang, Z.C. Zhong, Y.C. Zhou, W. Zhu, Z.B. Zhang, C.Y. Cai, and C.S. Lu, Acta. Mech. Sin., 2016, 32(2), p 342-348

    Article  Google Scholar 

  45. Y.X. Zhao, D.C. Li, X.H. Zhong, H.Y. Zhao, L. Wang, F. Shao, C.G. Liu, and S.Y. Tao, Surf. Coat. Technol., 2014, 249, p 48-55

    Article  Google Scholar 

  46. AE data sheets with summary, P 49. http://www.mistragroup.com

  47. L. Yang, H.S. Kang, Y.C. Zhou, L.M. He, and C. Lu, Exp. Mech., 2015, 55, p 321-330

    Article  Google Scholar 

  48. L. Yang, Z.C. Zhong, J. You, Q.M. Zhang, Y.C. Zhou, and W.Z. Tang, Surf. Coat. Technol., 2013, 232, p 710-718

    Article  Google Scholar 

  49. C.R.C. Lima and J.M. Guilemany, Surf. Coat. Technol., 2007, 201, p 4694-4701

    Article  Google Scholar 

  50. L. Wang, C.G. Liu, X.H. Zhong, Y.X. Zhao, H.Y. Zhao, J.S. Yang, S.Y. Tao, and Y. Wang, J. Therm. Spray Technol., 2015, 24(3), p 296-308

    Article  Google Scholar 

Download references

Acknowledgment

We express our gratitude to Mrs. Li Lei and Gao Jianhua for their experimental assistance. This work was jointly supported by the National Natural Science Foundation (NSFC) under the Grant No. 51671208, Natural Science Foundation of Shanghai (No. 16ZR1440700) and Laboratory foundation of Chinese Academy of Sciences (Grant No. 16S084). And we also give our thanks to the special Project for Army-Civilian Combination of Shanghai Municipal Commission of Economy and Informatization (Grant No. JMJH2014053). The current work was also supported by the Key Research Program of Chinese Academy of Sciences (No. KGZD-EW-T06) and the research grant (No. 14DZ2261203) from Shanghai government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Additional information

This article is an invited paper selected from presentations at the 2016 International Thermal Spray Conference, held May 10-12, 2016, in Shanghai, P. R. China, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Ni, J.X., Shao, F. et al. Failure Behavior of Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings Under Three-Point Bending Test via Acoustic Emission Technique. J Therm Spray Tech 26, 116–131 (2017). https://doi.org/10.1007/s11666-016-0497-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0497-2

Keywords

Navigation