Skip to main content
Log in

Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The aim of this study was the further development of dysprosia-stabilized zirconia coatings for gas turbine applications. The target for these coatings was a longer lifetime and higher insulating performance compared to today’s industrial standard thermal barrier coating. Two morphologies of ceramic top coat were studied: one using a dual-layer system and the second using a polymer to generate porosity. Evaluations were carried out using a laser flash technique to measure thermal properties. Lifetime testing was conducted using thermo-cyclic fatigue testing. Microstructure was assessed with SEM and Image analysis was used to characterize porosity content. The results show that coatings with an engineered microstructure give performance twice that of the present reference coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  CAS  Google Scholar 

  2. R. Harnacha, P. Fauchais, and F. Nardou, Influence of Dopant on the Thermal Properties of Two Plasma-Sprayed Zirconia Coatings. Part I: Relationship Between Powder Characteristics and Coating Properties, J. Therm. Spray Technol., 1996, 5(4), p 431-438

    Article  Google Scholar 

  3. S. Paul, A. Cipitria, S.A. Tsipas, and T.W. Clyne, Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilisers, Surf. Coat. Technol., 2009, 203(8), p 1069-1074

    Article  CAS  Google Scholar 

  4. N. Markocsan, P. Nylen, and J. Wigren, Low Thermal Conductivity Coatings for Gas Turbine Applications, J. Therm. Spray Technol., 2007, 16(4), p 498-505

    Article  CAS  Google Scholar 

  5. N. Markocsan, P. Nylén, J. Wigren, X.-H. Li, and A. Tricoire, Effect of Thermal Aging on Microstructure and Functional Properties of Zirconia-Base Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 201-208

    Article  CAS  Google Scholar 

  6. N. Curry, N. Markocsan, X.-H. Li, A. Tricoire, and M. Dorfman, Next Generation Thermal Barrier Coatings for the Gas Turbine Industry, J. Therm. Spray Technol., 2010, 20(1-2), p 108-115

    Article  Google Scholar 

  7. F. Cernuschi, L. Lorenzoni, S. Ahmaniemi, P. Vuoristo, and T. Mäntylä, Studies of the Sintering Kinetics of Thick Thermal Barrier Coatings by Thermal Diffusivity Measurements, J. Eur. Ceram. Soc., 2005, 25(4), p 393-400

    Article  CAS  Google Scholar 

  8. R. Vaßen, N. Czech, W. Malléner, W. Stamm, and D. Stöver, Influence of Impurity Content and Porosity of Plasma-Sprayed Yttria-Stabilized Zirconia Layers on the Sintering Behaviour, Surf. Coat. Technol., 2001, 141(2-3), p 135-140

    Article  Google Scholar 

  9. L. Xie, M.R. Dorfman, A. Cipitria, S. Paul, I.O. Golosnoy, and T.W. Clyne, Properties and Performance of High-Purity Thermal Barrier Coatings, J. Therm. Spray Technol., 2007, 16(5), p 804-808

    Article  CAS  Google Scholar 

  10. S.A. Tsipas, Effect of Dopants on the Phase Stability of Zirconia-Based Plasma Sprayed Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2010, 30(1), p 61-72

    Article  CAS  Google Scholar 

  11. J.R. Brandon and R. Taylor, Phase Stability of Zirconia-Based Thermal Barrier Coatings. Part I. Zirconia-Yttria Alloys, Surf. Coat. Technol., 1991, 46(1), p 75-90

    Article  CAS  Google Scholar 

  12. J.A. Haynes, M.K. Ferber, and W.D. Porter, Characterization of Alumina Scales Formed During Isothermal and Cyclic Oxidation of Plasma-Sprayed TBC Systems at 1150 °C, Oxid. Met., 1999, 52(1-2), p 31-76

    Article  CAS  Google Scholar 

  13. D. Stöver and C. Funke, Directions of the Development of Thermal Barrier Coatings in Energy Applications, J. Mater. Process. Technol., 1999, 92-93, p 195-202

    Article  Google Scholar 

  14. K. Schlichting, N. Padture, E. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, 342(1-2), p 120-130

    Article  Google Scholar 

  15. W. Brandl, D. Toma, J. Krüger, H.J. Grabke, and G. Matthäus, The Oxidation Behaviour of HVOF Thermal-Sprayed MCrAlY Coatings, Surf. Coat. Technol., 1997, 94-95, p 21-26

    Article  Google Scholar 

  16. W.R. Chen, X. Wu, B.R. Marple, D.R. Nagy, and P.C. Patnaik, TGO Growth Behaviour in TBCs with APS and HVOF Bond Coats, Surf. Coat. Technol., 2008, 202(12), p 2677-2683

    Article  CAS  Google Scholar 

  17. M. Di Ferdinando, A. Fossati, A. Lavacchi, U. Bardi, F. Borgioli, C. Borri et al., Isothermal Oxidation Resistance Comparison Between Air Plasma Sprayed, Vacuum Plasma Sprayed and High Velocity Oxygen Fuel Sprayed CoNiCrAlY Bond Coats, Surf. Coat. Technol., 2010, 204(15), p 2499-2503

    Article  Google Scholar 

  18. N. Curry and J. Donoghue, Evolution of Thermal Conductivity of Dysprosia Stabilised Thermal Barrier Coating Systems During Heat Treatment, Surf. Coat. Technol., 2012, 209, p 38-43

    Article  CAS  Google Scholar 

  19. J. Wigren, High Insulation Thermal Barrier Systems—HITS Brite Euram Project BE96-3226, 2002

  20. R.E. Taylor, Thermal Conductivity Determinations of Thermal Barrier Coatings, Mater. Sci. Eng. A, 1998, 245(2), p 160-167

    Article  Google Scholar 

  21. Z. Wang, A. Kulkarini, S. Deshpande, T. Nakamura, and H. Herman, Effects of Pores and Interfaces on Effective Properties of Plasma Sprayed Zirconia Coatings, Acta Mater., 2003, 51, p 5319-5334

    Article  CAS  Google Scholar 

  22. G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, Low Conductivity Plasma Sprayed Thermal Barrier Coating Using Hollow PSZ Spheres: Correlation Between Thermophysical Properties and Microstructure, Surf. Coat. Technol., 2008, 202(10), p 1994-2001

    Article  CAS  Google Scholar 

  23. D. Naumenko, V. Shemet, L. Singheiser, and W.J. Quadakkers, Failure Mechanisms of Thermal Barrier Coatings on MCrAlY-Type Bondcoats Associated with the Formation of the Thermally Grown Oxide, J. Mater. Sci., 2009, 44(7), p 1687-1703

    Article  CAS  Google Scholar 

  24. H.E. Evans, Oxidation Failure of TBC Systems: An Assessment of Mechanisms, Surf. Coat. Technol., 2011, 206(7), p 1512-1521

    Article  CAS  Google Scholar 

  25. R. Vaßen, G. Kerkhoff, and D. Stöver, Development of a Micromechanical Life Prediction Model for Plasma Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2001, 303(1-2), p 100-109

    Article  Google Scholar 

  26. T. Patterson, A. Leon, B. Jayaraj, J. Liu, and Y.H. Sohn, Thermal Cyclic Lifetime and Oxidation Behavior of Air Plasma Sprayed CoNiCrAlY Bond Coats for Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 203(5-7), p 437-441

    Article  CAS  Google Scholar 

  27. J. Musil, M. Alaya, and R. Oberacker, Plasma-Sprayed Duplex and Graded Partially Stabilized Zirconia Thermal Barrier Coatings: Deposition Process and Properties, J. Therm. Spray Technol., 1997, 6(4), p 449-455

    Article  CAS  Google Scholar 

  28. A. Tricoire, B. Kjellman, J. Wigren, M. Vanvolsem, and L. Aixala, Insulated Piston Heads for Diesel Engines, J. Therm. Spray Technol., 2009, 18(2), p 217-222

    Article  CAS  Google Scholar 

  29. C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi, Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2009, 18(2), p 223-230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the KK foundation for its financial support of the project. Thanks to Mr. S. Björklund for his work on the spray experiments. Thanks to Mr. J. Donoghue for his work on analysis of the samples. Thanks also to Mr. Niclas Åberg for performing TCF tests at Siemens in Finspång, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Curry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curry, N., Markocsan, N., Östergren, L. et al. Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems. J Therm Spray Tech 22, 864–872 (2013). https://doi.org/10.1007/s11666-013-9932-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9932-9

Keywords

Navigation