Skip to main content
Log in

Microstructure Evolution and Interface Stability of Thermal Barrier Coatings with Vertical Type Cracks in Cyclic Thermal Exposure

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, the effects of intrinsic feature of microstructure in thermal barrier coatings (TBCs) with and without vertical cracks on the microstructure and mechanical properties were investigated in cyclic thermal exposure. The hardness values of TBCs with vertical cracks were higher than those without vertical cracks, showing a good agreement with microstructure. The TBC prepared without vertical cracks using the 204-NS was delaminated after 250 cycles in the cyclic thermal exposure test. The TBCs with and without vertical cracks prepared with 204 C-NS and the TBC with vertical cracks prepared with 204 NS showed a sound condition without any cracking at the interface or spalling of top coat. After the thermal exposure of 381 cycles, the hardness values were increased in the survived TBC specimens, and the thicknesses of TGO layer for the TBCs with 204 C-NS and 204 NS were measured as in the ranges of 5-9 and 3-7 μm, respectively. In the thermal shock test, the advantage of vertical cracks for thermal durability of TBC could be well investigated, showing relatively longer sustained cycles in the TBCs with vertical cracks. The TBCs with vertical cracks are more efficient in improving thermal durability than those without vertical cracks in cyclic thermal exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46, p 505-553

    Article  Google Scholar 

  2. N.R. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284

    Article  CAS  Google Scholar 

  3. J.H. Zaat, A Quarter of Century of Plasma Spraying, Annu. Rev. Mater. Sci., 1983, 13, p 9-42

    Article  CAS  Google Scholar 

  4. D.R. Clarke and S.R. Phillport, Thermal Barrier Coating Materials, Mater. Today, 2005, 8(6), p 22-29

    Article  CAS  Google Scholar 

  5. J.Y. Kwon, J.H. Lee, Y.G. Jung, and U. Paik, Effect of Bond Coat Nature and Thickness on Mechanical Characteristic and Contact Damage of Zirconia-Based Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201, p 3483-3490

    Article  CAS  Google Scholar 

  6. J.Y. Kwon, J.H. Lee, H.C. Kim, Y.G. Jung, U. Paik, and K.S. Lee, Effect of Thermal Fatigue on Mechanical Characteristics and Contact Damage of Zirconia-Based Thermal Barrier Coatings with HVOF-Sprayed Bond Coat, Mater. Sci. Eng. A, 2006, 429, p 173-180

    Article  Google Scholar 

  7. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coating, Annu. Rev. Mater. Res., 2003, 33, p 383-417

    Article  CAS  Google Scholar 

  8. H.-J. Rätzer-Scheibe, U. Schulz, and T. Krell, The Effect of Coating Thickness on the Thermal Conductivity of EB-PVD PYSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201, p 5636-5644

    Article  Google Scholar 

  9. J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Methods to Reduce the Thermal Conductivity of EB-PVD TBCs, Surf. Coat. Technol., 2002, 151-152, p 383-391

    Article  CAS  Google Scholar 

  10. K. Richardt, K. Bobzin, D. Sporer, T. Schläfer, and P. Fiala, Tailor-Made Coatings for Turbine Applications Using the Triplex Pro 200, J. Therm. Spray Technol., 2008, 17, p 612-616

    Article  CAS  Google Scholar 

  11. X.Q. Cao, R. Vassenb, and D. Stoeverb, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1-10

    Article  CAS  Google Scholar 

  12. R. Dutton, R. Wheeler, K.S. Ravichandran, and K. An, Effect of Heat Treatment on the Thermal Conductivity of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2000, 9, p 204-209

    Article  CAS  Google Scholar 

  13. T. Bhatia, A. Ozturk, L. Xie, E.H. Jordan, B.M. Cetegen, M. Gell, X. Ma, and N.P. Padture, Mechanisms of Ceramic Coating Deposition in Solution-Precursor Plasma Spray, J. Mater. Res., 2002, 17, p 2363-2372

    Article  CAS  Google Scholar 

  14. W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, 342, p 120-130

    Article  Google Scholar 

  15. A. Rabiei and A.G. Evans, Failure Mechanism Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48, p 3963-3976

    Article  CAS  Google Scholar 

  16. T.A. Talyor, US Patent No. 5073433, 1991

  17. A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo, and E.R. Fuller, Jr., Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54, p 3343-3349

    Article  CAS  Google Scholar 

  18. A. Jadhav, N.P. Padture, F. Wu, E.H. Jordan, and M. Gell, Thick Ceramic Thermal Barrier Coatings with High Durability Deposited Using Solution-Precursor Plasma Spray, Mater. Sci. Eng. A, 2005, 405, p 313-320

    Article  Google Scholar 

  19. T.A. Taylor, D.L. Appleby, A.E. Weatherill, and J. Griffiths, Plasma-Sprayed Yttria-Stabilized Zirconia Coatings: Structure-Property Relationships, Surf. Coat. Technol., 1990, 43-44, p 470-480

    Article  Google Scholar 

  20. Y.H. Sohn, E.Y. Lee, B.A. Nagaraj, R.R. Biederman, and R.D. Sisson, Jr., Microstructural Characterization of Thermal Barrier Coatings on High Pressure Turbine Blades, Surf. Coat. Technol., 2001, 146-147, p 132

    Article  CAS  Google Scholar 

  21. M. Madhwal, E.H. Jordan, and M. Gell, Failure Mechanisms of Dense Vertically-Cracked Thermal Barrier Coatings, Mater. Sci. Eng. A, 2004, 384, p 151-161

    Article  Google Scholar 

  22. Sulzer-Metco Thermal Spray Materials Guide, http://www.sulzermetco.com/

  23. B.R. Lawn, Fracture of Brittle Solids, 2nd ed., Cambridge University Press, Cambridge, UK, 1993

    Book  Google Scholar 

  24. C. Zhou, N. Wang, Z. Wang, S. Gang, and H. Xu, Thermal Cycling Life and Thermal Diffusivity of a Plasma-Sprayed Nanostructured Thermal Barrier Coating, Scripta Mater., 2004, 51, p 945-948

    Article  Google Scholar 

  25. P.K. Panda, T.S. Kannan, J. Dubois, C. Olagnon, and G. Fantozzi, Thermal Shock and Thermal Fatigue Study of Ceramic Materials on a Newly Developed Ascending Thermal Shock Test Equipment, Sci. Technol. Adv. Mater., 2002, 3, p 327-334

    Article  CAS  Google Scholar 

  26. S.O. Chwa and A. Ohmori, Microstructures of ZrO2-8wt.%Y2O3 Coatings Prepared by a Plasma Laser Hybrid Spraying Technique, Surf. Coat. Technol., 2002, 153, p 304-312

    Article  CAS  Google Scholar 

  27. X.Q. Ma and M. Takemoto, Quantitative Acoustic Emission Analysis of Plasma Sprayed Thermal Barrier Coatings Subjected to Thermal Shock Tests, Mater. Sci. Eng. A, 2001, 308, p 101-110

    Article  Google Scholar 

  28. Y. Radin and T. Kontorovich, Equivalent Operating Hours Concept for CCPP Components Reliability Evaluation, 2012 International Conference on Power Energy System, 2012, vol 13, p 175-178

  29. GeneralCologne Re™, Power Re-View, https://www.facworld.com/WebLib.NSF/ObjectPreview/1Power2.pdf/$File/Power2.pdf

  30. K. Ma and J.M. Schoenung, Isothermal Oxidation Behavior of Cryomilled NiCrAlY Bond Coat: Homogeneity and Growth Rate of TGO, Surf. Coat. Technol., 2011, 205, p 5178-5185

    Article  CAS  Google Scholar 

  31. H.J. Jang, D.H. Park, Y.G. Jung, J.C. Jang, S.C. Choi, and U. Paik, Mechanical Characterization and Thermal Behavior of HVOF-Sprayed Bond Coat in Thermal Barrier Coatings (TBCs), Surf. Coat. Technol., 2006, 200, p 4355-4362

    Article  CAS  Google Scholar 

  32. P.G. Tsantrizos, G.E. Kim, and T.A. Braezinski, TBCs on Free Standing Multilayer Components, AGARD SMP Meeting on “Thermal Barrier Coatings” (Aalberg, Denmark), 1997, p 7-1-7-8

  33. P.H. Lee, S.-Y. Lee, J.-Y. Kwon, S.W. Myoung, J.H. Lee, Y.G. Jung, H. Cho, and U. Paik, Thermal Cycling Behavior and Interfacial Stability in Thick Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205, p 1250-1255

    Article  CAS  Google Scholar 

  34. S.W. Myoung, J.H. Kim, W.R. Lee, Y.G. Jung, K.S. Lee, and U. Paik, Microstructure Design and Mechanical Properties of Thermal Barrier Coatings with Layered Top and Bond Coats, Surf. Coat. Technol., 2010, 205, p 1229-1235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2012-0009450), by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy (10041233), and by the Power Generation & Electricity Delivery of the Korean Institute of Energy Technology Evaluation and Planning (KETEP) grants funded by the Korean Ministry of Knowledge Economy (2011T100200224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Myoung, SW., Kim, HS. et al. Microstructure Evolution and Interface Stability of Thermal Barrier Coatings with Vertical Type Cracks in Cyclic Thermal Exposure. J Therm Spray Tech 22, 671–679 (2013). https://doi.org/10.1007/s11666-013-9886-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9886-y

Keywords

Navigation