Skip to main content
Log in

Microstructural Analysis and Photocatalytic Activity of Plasma-Sprayed Titania-Hydroxyapatite Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp Ca10(PO4)6(OH)2) is known to be a biomaterial and an adsorbent for chromatography. In this study, HAp was agglomerated with anatase TiO2 to manufacture thermal-spray powders to improve the adsorption activity of TiO2, and then to improve its photocatalytic activity. The microstructures, compositions and photocatalytic activity of plasma-sprayed TiO2, TiO2-10%HAp, TiO2-30%HAp, and HAp coatings were investigated. Due to the low thermal conductivity of HAp compound, not all HAp particles fully melted even under the arc current of 800 A. The addition of HAp inhibited the phase transformation of anatase TiO2 to rutile. Under the arc current of 600 A, the anatase content in the TiO2, TiO2-10%HAp and TiO2-30%HAp coatings was 11, 20 and 42%, respectively. With the increasing of the spraying distance from 70 to 110 mm, the anatase content in the TiO2-30%HAp coatings decreased from 34 to 17% under arc current of 700 A. Furthermore, a slight decomposition of HAp to α-Ca3(PO4)2 was found in the TiO2-30%HAp coatings, it did not decompose to CaO and P2O5 according to the XRD and EDAX analysis. The addition of the secondary gas of helium had no significant influence on the melting state of the TiO2-HAp feedstock powders. Moreover, the HAp in the TiO2-10%HAp and TiO2-30%HAp coatings had adsorption characteristic to acetaldehyde. The photocatalytic activity of TiO2-10%HAp coating was highest among TiO2, TiO2-10%HAp, and TiO2-30%HAp coatings sprayed under the arc current of 600 A for the optimum adsorption property and anatase content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fujishima A., Honda K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  2. Tributsch H., Pohlmann L. (1995) Synergetic Molecular Approaches towards Artificial and Photosynthetic Water Photoelectrolysis. J. Electroanal. Chem. 396:53–61

    Article  Google Scholar 

  3. Fujishima A., Rao T.N., Tryk D.A. (2000) Titanium Dioxide Photocatalysis. J. Photochem. Photobio. C: Photobio. Rev. 1(1):1–21

    Article  CAS  Google Scholar 

  4. Mills A., Hunte S.L. (1997) An Overview of Semiconductor Photocatalysis. J. Photochem. Photobio. A Chem. 108:1–35

    Article  CAS  Google Scholar 

  5. Pirkanniemi K., Sillanpaa M. (2002) Heterogeneous Water Phase Catalysis as an Environmental Application: A Review. Chemosphere 48:1047–1060

    Article  CAS  Google Scholar 

  6. Zhao J., Yang X.D. (2003) Photocatalytic Oxidation for Indoor Air Purification: A Literature Review. Build. Environ. 38:645–654

    Article  Google Scholar 

  7. Herrmann J.M. (1999) Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 53:115–129

    Article  CAS  Google Scholar 

  8. Malato S., Blanco J., Vidal A., Richter C. (2002) Photocatalysis with Solar Energy at a Pilot-plant Scale: An Overview. Appl. Catal. B-Environ. 37:1–15

    Article  CAS  Google Scholar 

  9. Fernandez-Ibanez P., Malato S., Enea O. (1999) Photoelectrochemical Reactors for the Solar Decontamination of Water. Catal. Today 54:329–339

    Article  CAS  Google Scholar 

  10. Ye F.X., Ohmori A. (2002) The Photocatalytic Activity and Photo-absorption of Plasma Sprayed TiO2-Fe3O4 Binary Oxide Coatings. Surf. Coat. Technol. 160(1):62–67

    Article  CAS  Google Scholar 

  11. Ye F.X., Ohmori A., Li C.J. (2004) New Approach to Enhance the Photocatalytic Activity of Plasma Sprayed TiO2 Coatings Using p-n Junctions. Surf. Coat. Technol. 184:233–238

    Article  CAS  Google Scholar 

  12. Nonami T., Hase H., Funakoshi K. (2004) Apatite-coated Titanium Dioxide Photocatalyst for Air Purification, Catal. Today 96:113–118

    Article  CAS  Google Scholar 

  13. Nakajima A., Takakuwa K., Kameshima Y. et al. (2006) Preparation and Properties of Titania-Apatite Hybrid Films. J. Photochem. Photobio. A Chem. 177:94–99

    Article  CAS  Google Scholar 

  14. Wang Y., Khor K.A., Cheang P. (1998) Thermal Spraying of Functionally Graded Calcium Phosphate Coatings for Biomedical Implants. J. Therm. Spray. Technol. 7(1):50–57

    CAS  Google Scholar 

  15. Haman J.D., Boulware A.A., Lucas L.C., Crawmer D.E. (1995) High-velocity Oxyfuel Thermal Spray Coatings for Biomedical Applications. J. Therm. Spray. Technol. 4(2):179–184

    Article  CAS  Google Scholar 

  16. Cheang P., Khor K.A. (1996) Influence of Powder Characteristics on Plasma Sprayed Hydroxyapatite Coatings. J. Therm. Spray. Technol. 5(3):310–316

    Article  CAS  Google Scholar 

  17. Khor K.A., Yip C.S., Cheang P. (1997) Ti-6Al-4V/hydroxyapatite Composite Coatings Prepared by Thermal Spray Techniques. J. Therm. Spray. Technol. 6(1):109–115

    Article  CAS  Google Scholar 

  18. Spurr R.A., Myers H. (1957) Quantitative Analysis of Anatase-Rutile Mixtures with an x-ray Diffactometer. Anal. Chem. 29(5):760–762

    Article  CAS  Google Scholar 

  19. A. Ohmori, F.X. Ye, and C. J. Li, The Effects of the Additives on Photocatalytic Performance of Plasma Sprayed Titanium Dioxide Coatings, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 4-6, Essen, Germany, DVS, 2002, p 165-169

  20. Dyshlovenko S., Pateyron B., Pawlowski L., Murano D. (2004) Numerical Simulation of Hydroxyapatite Powder Behaviour in Plasma Jet. Surf. Coat. Technol. 179:110–117

    Article  CAS  Google Scholar 

  21. http://www.matweb.com/search/SpecificMaterial.asp?bassnum=BOTiA

  22. http://www.astlettrubber.com/pdf/titaniumdioxide/msds/titaniumdioxide.pdf

  23. Ryu H.S., Youn H.J., Kong K.S., Chang B.S., Lee C.K., Chung S.S. (2003) An Improvement in Sintering Property of β-Tricalcium Phosphate by Addition of Calcium Pyrophosphate. Biomaterials 23:909–914

    Article  Google Scholar 

  24. Choi D., Kumta P.N. (2007) Mechano-chemical Synthesis and Characterization of Nanostructured β-TCP Powder. Mat. Sci. Eng. C 27(3):377–381

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.-X. Ye.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, FX., Ohmori, A., Tsumura, T. et al. Microstructural Analysis and Photocatalytic Activity of Plasma-Sprayed Titania-Hydroxyapatite Coatings. J Therm Spray Tech 16, 776–782 (2007). https://doi.org/10.1007/s11666-007-9126-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9126-4

Keywords

Navigation