Skip to main content
Log in

Molecular Dynamics Simulation of Flattening Process of a High-Temperature, High-Speed Droplet—Influence of Impact Parameters

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Three-dimensional molecular dynamics simulation was conducted to clarify at an atomic level the flattening process of a high-temperature droplet impacting a substrate at high speed. The droplet and the substrate were assumed to consist of pure aluminum, and the Morse potential was postulated between a pair of aluminum atoms. In this report, the influence of the impact parameters such as the droplet velocity and the droplet diameter on flattening behavior were analyzed. As a result, the following representative conclusions were obtained: (a) the flattening ratio increases in proportion to the droplet velocity and the droplet diameter; (b) the flattening ratio for nanosized droplet can be reorganized by the same dimensionless parameters of the proper physical properties, such as the viscosity and the surface tension, as those used in the macroscopic flattening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons, Chichester, UK, 1995

    Google Scholar 

  2. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films, John Wiley & Sons, Chichester, UK, 1994

    Google Scholar 

  3. V.I. Merkulov, D.H. Lowndes, G.E. Jellison, Jr., A.A. Puretzky, D.B. Geohegan, Structure and Optical Properties of Amorphous Diamond Films Prepared by ArF Laser Ablation as a Function of Carbon Ion Kinetic Energy, Appl. Phys. Lett., 1998, 73(18), p 2591-2593

    Article  CAS  Google Scholar 

  4. J. Madejski, Solidification of Droplets on a Cold Surface, Int. J. Heat Mass Transfer, 1976, 19, p 1009-1013

    Article  Google Scholar 

  5. J.P. Delplanque, R.H. Rangel, An Improved Model for Droplet Solidification on a Flat Surface, J. Mater. Sci., 1997, 32(6), p 1519-1530

    Article  CAS  Google Scholar 

  6. M. Pasandideh-Fard, Y.M. Qiao, S. Chandra, J. Mostaghimi, Capillary Effects During Droplet Impact on a Surface, Phys. Fluids, 1996, 8(3), p 650-659

    Article  CAS  Google Scholar 

  7. M. Pasandideh-Fard, R. Bhola, S. Chandra, J. Mostaghimi, Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments, Int. J. Heat Mass Transfer, 1998, 41, p 2929-2945

    Article  CAS  Google Scholar 

  8. H. Jones, Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization, J. Phys. D, Appl. Phys., 1971, 4, p 1657-1660

    Article  CAS  Google Scholar 

  9. G. Trapaga, J. Szekely, Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes, Metall. Trans., 1991, 22B, p 901-914

    CAS  Google Scholar 

  10. G. Trapaga, J. Szekely, Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results, Metall. Trans., 1992, 23B, p 701-718

    CAS  Google Scholar 

  11. E. Nishioka, M. Fukumoto, Flattening Behavior of Freely Fallen Molten Metal Droplet on Flat Substrate, Quart. J. Jpn. Weld. Soc., 1998, 16(4), p 437-444

    CAS  Google Scholar 

  12. M. Fukumoto, H. Nagai, T. Yasui, Influence of Surface Character Change of Substrate Due to Heating on Flattening Behavior of Thermal Sprayed Particles, J. Therm. Spray Technol., 2006, 15(4), p 759-764

    Article  CAS  Google Scholar 

  13. L. Li, A. Vaidya, S. Sampath, H. Xiong, L. Zheng, Particle Characterization and Splat Formation of Plasma Sprayed Zirconia, J. Thermal Spray Technol., 2006, 15(1), p 97-105

    Article  CAS  Google Scholar 

  14. P. Fauchais, M. Fukumoto, A. Vardelle, M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Thermal Spray Technol., 2004, 13(3), p 337-360

    Article  CAS  Google Scholar 

  15. P. Gougeon, C. Moreau, Simultaneous Independent Measurement of Splat Diameter and Cooling Time During Impact on a Substrate of Plasma Sprayed Molybdenum Particles, J. Thermal Spray Technol., 2001, 10(1), p 76-82

    Article  CAS  Google Scholar 

  16. A. McDonald, M. Lamontagne, S. Chandra, C. Moreau, Photographing Impact of Plasma-Sprayed Particles on Metal Substrates, J. Thermal Spray Technol., 2006, 15(4), p 708-716

    Article  CAS  Google Scholar 

  17. M. Xue, S. Chandra, J. Mostaghimi, Investigation of Splat Curling up in Thermal Spray Coatings, J. Thermal Spray Technol., 2006, 15(4), p 531-536

    Article  CAS  Google Scholar 

  18. N.Z. Mehdizadeh, M. Lamontagne, C. Moreau, S. Chandra, J. Mostaghimi, Photographing Impact of Molten Molybdenum Particles in a Plasma Spray, J. Thermal Spray Technol., 2005, 14(3), p 354-361

    Article  CAS  Google Scholar 

  19. Y. Shibuta, S. Maruyama, Molecular Dynamics Simulation of Formation Process of Single-walled Carbon Nanotubes by CCVD Method, Chem. Phys. Lett., 2003, 382 (3-4), p 381-386

    Article  CAS  Google Scholar 

  20. K. Tanaka, T. Kato, Y. Matsumoto, Molecular Dynamics Simulation of Vibrational Friction Force Due to Molecular Deformation in Confined Lubricant Film, ASME J. Tribol,, 2003, 125(3), p 587-591

    Article  CAS  Google Scholar 

  21. T. Inamura, S. Shimada, N. Takezawa, N. Nakahara, Brittle/Ductile Transition Phenomena Observed in Computer Simulations of Machining Defect-Free Monocrystalline Silicon, Ann. CIRP, 1997, 46(1), p 31-34

    Article  Google Scholar 

  22. J. Shimizu, E. Ohmura, Y. Kobayashi, S. Kiyoshima, H. Eda, Molecular Dynamics Analysis of Elementary Process of Coating by a High-Temperature, High-Speed Droplet (Flattening Process and Atomic Behavior of a Droplet), JSME (Jpn. Soc. Mech. Eng.) Int. J. Series C, 2006, 49(2), p 505-511

    Article  CAS  Google Scholar 

  23. R.W. Hockney, The Potential Calculation and Some Applications, Meth. Comput. Phys., 1969, 9, p 135

    Google Scholar 

  24. L.A. Girifalco, V.G. Weizer, Application of the Morse Potential Function to Cubic Metals, Phys. Rev., 1959, 114, p 687-690

    Article  CAS  Google Scholar 

  25. J. Shimizu, E. Ohmura, H. Eda, Analysis of Sliding Mechanism Using Molecular Dynamics: Friction Process, Jpn. J. Trib., 1996, 41(12), p 1375-1386

    Google Scholar 

  26. J. Farges, M.F. de Feraudy, B. Raout, G. Torchet, Noncrystalline Structure of Argon Clusters, J. Chem. Phys., 1986, 84(6) p 3491-3501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Takahashi Industrial and Economic Research Foundation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shimizu.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, J., Ohmura, E., Kobayashi, Y. et al. Molecular Dynamics Simulation of Flattening Process of a High-Temperature, High-Speed Droplet—Influence of Impact Parameters. J Therm Spray Tech 16, 722–728 (2007). https://doi.org/10.1007/s11666-007-9103-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9103-y

Keywords

Navigation