Skip to main content
Log in

Oxidation Study of Ni-W Alloy Matrix Coating Reinforced with Multiple Dissimilar Nanoparticles

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A pulsed electrodeposition was performed on mild steel surfaces to prepare Ni-W-based composite coatings consisting of TiO2 and ZrO2 oxide nanoparticles. To evaluate the oxidative properties of coatings, isothermal oxidation studies were performed on the coatings at 873, 973, and 1073 K in the air for 30 h. The coatings' phase evolution, morphology, and chemistry were investigated by x-ray diffraction, field emission scanning electron microscopy, and energy-dispersive spectroscopy, respectively. As a result of examining the microstructure changes after the oxidation test, it was found that the oxide formation increased according to the oxidation temperature. To determine the oxidation kinetics of the respective coatings, Arrhenius plots were drawn and activation energies were calculated. The final results confirmed that the oxidation resistance of the Ni-W-TiO2-ZrO2 nanocomposite coatings (NiWNC) increased with the addition of ZrO2 (0 − 15 g/L). In this study, better oxidation resistance was observed for the Ni-W-5 g/L TiO2-15 g/L ZrO2 nanocomposites compared to the rest of the coatings. These findings highlight the potential of producing highly oxidation-resistant coatings using a cost-effective method on commercially available metal surfaces such as mild steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. He, M. Wang, and X. Lu, Properties of Electrodeposited Amorphous Fe-Ni-W Alloy Deposits, Trans. Nonferrous Met. Soc. China, 2006, 16(6), p 1289–1294. https://doi.org/10.1016/S1003-6326(07)60008-9

    Article  CAS  Google Scholar 

  2. L. Anicai, Ni-W Alloys Coatings as Ecological Alternative for Chromium Plating - Evaluation of Corrosion Behaviour, Corros. Rev., 2007, 25(5–6), p 607–620. https://doi.org/10.1515/CORRREV.2007.25.5-6.607

    Article  CAS  Google Scholar 

  3. E.W. Brooman, Corrosion Performance of Environmentally Acceptable Alternatives to Cadmium and Chromium Coatings: Chromium—Part II, Met. Finish., 2000, 98(8), p 39–45. https://doi.org/10.1016/S0026-0576(00)82740-3

    Article  CAS  Google Scholar 

  4. S. Kirihara, Y. Umeda, K. Tashiro, H. Honma, and O. Takai, Development of Ni-W Alloy Plating as a Substitution of Hard Chromium Plating, Trans. Mater. Res. Soc. Japan, 2016, 41(1), p 35–39. https://doi.org/10.14723/tmrsj.41.35

    Article  CAS  Google Scholar 

  5. N.P. Wasekar and G. Sundararajan, Sliding Wear Behavior of Electrodeposited Ni-W Alloy and Hard Chrome Coatings, Wear, 2015, 342–343, p 340–348. https://doi.org/10.1016/j.wear.2015.10.003

    Article  CAS  Google Scholar 

  6. M.W. Losey, J.J. Kelly, N.D. Badgayan, S.K. Sahu, and P.S. Rama Sreekanth, Electrodeposition, Ref. Modul. Mater. Sci. Mater. Eng., 2017 https://doi.org/10.1016/B978-0-12-803581-8.10137-7

    Article  Google Scholar 

  7. F. Nasirpouri, K. Alipour, F. Daneshvar, and M.-R. Sanaeian, Electrodeposition of Anticorrosion Nanocoatings, Corros. Prot. Nanoscale, 2020 https://doi.org/10.1016/B978-0-12-819359-4.00024-6

    Article  Google Scholar 

  8. D. Sobha Jayakrishnan, Electrodeposition: The Versatile Technique for Nanomaterials, Corros. Prot. Control Nanomater., 2012 https://doi.org/10.1533/9780857095800.1.86

    Article  Google Scholar 

  9. S. Shaik and A. Basu, Effect of Multiple Dissimilar Nanoparticles in Ni-W Alloy Matrix Composite Coating and Evaluation of Surface-Mechanical, Corrosion, and Hydrophobic Properties, Mater. Chem. Phys., 2022, 278, p 125585. https://doi.org/10.1016/j.matchemphys.2021.125585

    Article  CAS  Google Scholar 

  10. M.K. Kolle, S. Shajahan, and A. Basu, Effect of Electrodeposition Current and Pulse Parameter on Surface Mechanical and Electrochemical Behavior of Ni-W Alloy Coatings, Metall. Mater. Trans. A, 2020, 51(7), p 3721–3731. https://doi.org/10.1007/s11661-020-05787-0

    Article  CAS  Google Scholar 

  11. S. Shajahan and A. Basu, Effect of Current Density and Deposition Time on the Corrosion and Wear Resistance of Ni-W Alloy Coatings, Int. J. Mater. Res., 2019, 110(12), p 1160–1167. https://doi.org/10.3139/146.111844

    Article  CAS  Google Scholar 

  12. H. Goldasteh and S. Rastegari, The Influence of Pulse Plating Parameters on Structure and Properties of Ni-W-TiO2 Nanocomposite Coatings, Surf. Coatings Technol., 2014, 259(PC), p 393–400.

    Article  CAS  Google Scholar 

  13. S. Shajahan and A. Basu, Corrosion, Oxidation and Wear Study of Electro-Co-Deposited ZrO2-TiO2 Reinforced Ni-W Coatings, Surf. Coatings Technol., 2020, 393, p 125729. https://doi.org/10.1016/j.surfcoat.2020.125729

    Article  CAS  Google Scholar 

  14. D.B. Lee, J.H. Ko, and S.C. Kwon, Oxidation of Ni-W Coatings at 700 and 800 °C in Air, Surf. Coatings Technol., 2005, 193(1–3), p 292–296. https://doi.org/10.1016/j.surfcoat.2004.08.151

    Article  CAS  Google Scholar 

  15. M.H. Allahyarzadeh, M. Aliofkhazraei, A.R. Rezvanian, V. Torabinejad, and A.R. Sabour Rouhaghdam, Ni-W Electrodeposited Coatings: Characterization, Properties and Applications, Surf. Coatings Technol., 2016, 307, p 978–1010. https://doi.org/10.1016/j.surfcoat.2016.09.052

    Article  CAS  Google Scholar 

  16. B. Han and X. Lu, Effect of Nano-Sized CeF3 on Microstructure, Mechanical, High Temperature Friction and Corrosion Behavior of Ni-W Composite Coatings, Surf. Coatings Technol., 2009, 203(23), p 3656–3660. https://doi.org/10.1016/j.surfcoat.2009.05.046

    Article  CAS  Google Scholar 

  17. B. Han and X. Lu, Effect of La2O3 on Microstructure, Mechanical and Tribological Properties of Ni-W Coatings, Sci. Bull., 2009, 54(24), p 4566–4570. https://doi.org/10.1007/s11434-009-0603-7

    Article  CAS  Google Scholar 

  18. M.C. Zeman, C.C. Fulton, G. Lucovsky, R.J. Nemanich, and W.-C. Yang, Thermal Stability of TiO2, ZrO2, or HfO2 on Si(100) by Photoelectron Emission Microscopy, J. Appl. Phys., 2006, 99(2), p 023519. https://doi.org/10.1063/1.2163984

    Article  CAS  Google Scholar 

  19. M. Nanko, M. Yoshimura, and T. Maruyama, High Temperature Oxidation of Y2O3 Partially-Stabilized ZrO2 Composites Dispersed with Ni Particles, Mater. Trans., 2003, 44(4), p 736–742. https://doi.org/10.2320/matertrans.44.736

    Article  CAS  Google Scholar 

  20. G.N.K.R. Bapu and S. Jayakrishnan, Oxidation Characteristics of Electrodeposited Nickel-Zirconia Composites at High Temperature, Mater. Chem. Phys., 2006, 96(2–3), p 321–325. https://doi.org/10.1016/j.matchemphys.2005.07.021

    Article  CAS  Google Scholar 

  21. V.P. Gorelov, High-Temperature Phase Transitions in ZrO2, Phys. Solid State, 2019, 61(7), p 1288–1293. https://doi.org/10.1134/S1063783419070096

    Article  CAS  Google Scholar 

  22. J.-P. Brog, C.-L. Chanez, A. Crochet, and K.M. Fromm, Polymorphism, What It Is and How to Identify It: A Systematic Review, RSC Adv., 2013, 3(38), p 16905. https://doi.org/10.1039/c3ra41559g

    Article  CAS  Google Scholar 

  23. C. Byrne, R. Fagan, S. Hinder, D.E. McCormack, and S.C. Pillai, New Approach of Modifying the Anatase to Rutile Transition Temperature in TiO2 Photocatalysts, RSC Adv., 2016, 6(97), p 95232–95238. https://doi.org/10.1039/C6RA19759K

    Article  CAS  Google Scholar 

  24. D.A.H. Hanaor and C.C. Sorrell, Review of the Anatase to Rutile Phase Transformation, J. Mater. Sci., 2011, 46(4), p 855–874. https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  25. N. Wetchakun, B. Incessungvorn, K. Wetchakun, and S. Phanichphant, Influence of Calcination Temperature on Anatase to Rutile Phase Transformation in TiO2 Nanoparticles Synthesized by the Modified Sol-Gel Method, Mater. Lett., 2012, 82, p 195–198. https://doi.org/10.1016/j.matlet.2012.05.092

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Partial financial support for this work from the Council of Scientific & Industrial Research, India (Grant No. (0755)/17/EMR-II), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shajahan Shaik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, S., Kushwaha, A. & Basu, A. Oxidation Study of Ni-W Alloy Matrix Coating Reinforced with Multiple Dissimilar Nanoparticles. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09002-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09002-0

Keywords

Navigation