Skip to main content

Advertisement

Log in

Corrosion Behavior of 2507 Super Duplex Stainless Steel in H2S-Free and H2S-Containing Acidic Environments

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior of 2507 super duplex stainless steel (SDSS) in H2S-free and H2S-containing acidic environments was investigated. In N2 environment, the dissolution of Fe was intensified with potential, resulting in the increase in the current density. The presence of H2S decreased the corrosion resistance of 2507 SDSS. As the potential rose between − 0.45 and − 0.37 V(SCE), the selective dissolution of the ferrite was declined due to the increase in the content of Cr and Fe species in the corrosion product layer. Interestingly, when the potential was above − 0.37 V(SCE), the formation of pits in the ferritic region at the phase boundary interface extended toward the ferritic region with the increasing potential under the synergistic effect of H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. J. Tang, Y. Shao, J. Guo, T. Zhang, G. Meng, and F. Wang, The effect of H2S Concentration on the Corrosion Behavior of Carbon Steel at 90 °C, Corros. Sci., 2010, 52(6), p 2050–2058.

    Article  CAS  Google Scholar 

  2. L. Wei, X. Pang, and K. Gao, Corrosion of Low Alloy Steel and Stainless Steel in Supercritical CO2/H2O/H2S Systems, Corros. Sci., 2016, 111, p 637–648.

    Article  CAS  Google Scholar 

  3. L. Wang, Y. Dou, S. Han, J. Wu, and Z. Cui, Influence of Sulfide on the Passivation Behavior and Surface Chemistry of 2507 Super Duplex Stainless Steel in Acidified Artificial Seawater, Appl. Surf. Sci., 2020, 504, p 144340.

    Article  CAS  Google Scholar 

  4. J.M. Shockley, D.J. Horton, and K.J. Wahl, Effect of Aging of 2507 Super Duplex Stainless Steel on Sliding Tribocorrosion in Chloride Solution, Wear, 2017, 380, p 251–259.

    Article  Google Scholar 

  5. H.Y. Ha, M.H. Jang, T.H. Lee, and J. Moon, Interpretation of the Relation Between Ferrite Fraction and Pitting Corrosion Resistance of Commercial 2205 Duplex Stainless Steel, Corros. Sci., 2014, 89, p 154–162.

    Article  CAS  Google Scholar 

  6. A. Pinol-Juez, A. Iza-Mendia, and I. Gutierrez, δ/γ Interface Bondary Sliding as a Mechanism for Strain Accommodation During Hot Deformation in a Duplex Stainless Steel, Metall. Mater. Trans. A., 2000, 31(6), p 1671–1677.

    Article  Google Scholar 

  7. J.S. Lee, K. Fushimi, T. Nakanishi, Y. Hasegawa, and Y.-S. Park, Corrosion Behaviour of Ferrite and Austenite Phases on Super Duplex Stainless Steel in a Modified Green-Death Solution, Corros. Sci., 2014, 89, p 111–117.

    Article  CAS  Google Scholar 

  8. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and X. Lv, Effect of Post-Weld Heat Treatment on Microstructure Evolution and Pitting Corrosion Resistance of Electron Beam-Welded Duplex Stainless Steel, Corros. Sci., 2018, 141, p 30–45.

    Article  CAS  Google Scholar 

  9. J. Rajaguru and N. Arunachalam, Investigation on Machining Induced Surface and Subsurface Modifications on the Stress Corrosion Crack Growth Behaviour of Super Duplex Stainless Steel, Corros. Sci., 2018, 141, p 230–242.

    Article  CAS  Google Scholar 

  10. H.-Y. Ha, T.-H. Lee, C.-G. Lee, and H. Yoon, Understanding the Relation Between Pitting Corrosion Resistance and Phase Fraction of S32101 Duplex Stainless Steel, Corros. Sci., 2019, 149, p 226–235.

    Article  CAS  Google Scholar 

  11. N. Lopez, M. Cid, and M. Puiggali, Influence of o-Phase on Mechanical Properties and Corrosion Resistance of Duplex Stainless Steels, Corros. Sci., 1999, 41(8), p 1615–1631.

    Article  CAS  Google Scholar 

  12. S.-H. Jeon, H.-J. Kim, and Y.-S. Park, Effects of Inclusions on the Precipitation of Chi Phases and Intergranular Corrosion Resistance of Hyper Duplex Stainless Steel, Corros. Sci., 2014, 87, p 1–5.

    Article  CAS  Google Scholar 

  13. L. Chiu, Y. Su, F. Chen, and H. Chang, Microstructure and Properties of Active Screen Plasma Nitrided Duplex Stainless Steel, Mater. Manuf. Processes., 2010, 25(5), p 316–323.

    Article  CAS  Google Scholar 

  14. O.P. Calabokis, Y.N. de la Rosa, C.M. Lepienski, R.P. Cardoso, and P.C. Borges, Crevice and Pitting Corrosion of Low Temperature Plasma Nitrided UNS S32750 Super Duplex Stainless Steel, Surf. Coat. Tech., 2021, 413, p 127095.

    Article  Google Scholar 

  15. Y. Zhang, Q. Hu, M. Dai, F. Huang, F.Y. Cheng, and J. Liu, Investigation of Micro-Electrochemical Activities of Oxide Inclusions and Microphases in Duplex Stainless Steel and the Implication on Pitting Corrosion, Mater. Corros., 2020, 71(6), p 876–886.

    Article  CAS  Google Scholar 

  16. G. Tranchida, M. Clesi, F. Di Franco, F. Di Quarto, and M. Santamaria, Electronic Properties and Corrosion Resistance of Passive Films on Austenitic and Duplex Stainless steels, Electrochim. Acta., 2018, 273, p 412–423.

    Article  CAS  Google Scholar 

  17. Y. Behnamian, A. Mostafaei, A. Kohandehghan, B. Zahiri, W. Zheng, D. Guzonas, M. Chmielus, W. Chen, and J.L. Luo, Corrosion Behavior of Alloy 316L Stainless Steel After Exposure to Supercritical Water at 500 C for 20,000 h, J. Supercrit. Fluid., 2017, 127, p 191–199.

    Article  CAS  Google Scholar 

  18. C. Dai, T. Zhao, C. Du, Z. Liu, and D. Zhang, Effect of Molybdenum Content on the Microstructure and Corrosion Behavior of FeCoCrNiMox High-Entropy Alloys, J. Mater. Sci. Technol., 2020, 46, p 64–73.

    Article  CAS  Google Scholar 

  19. D. Shintani, T. Ishida, H. Izumi, T. Fukutsuka, Y. Matsuo, and Y. Sugie, XPS Studies on Passive Film Formed on Stainless Steel in a High-Temperature and High-Pressure Methanol Solution Containing Chloride Ions, Corros. Sci., 2008, 50(10), p 2840–2845.

    Article  CAS  Google Scholar 

  20. V. Maurice, W. Yang, and P. Marcus, XPS and STM Study of Passive Films Formed on Fe-22Cr (110) Single-Crystal Surfaces, J. Electrochem. Soc., 1996, 143(4), p 1182.

    Article  CAS  Google Scholar 

  21. Z. Wang, Z.-Q. Zhou, L. Zhang, J.-Y. Hu, Z.-R. Zhang, and M.-X. Lu, Effect of pH on the Electrochemical Behaviour and Passive Film Composition of 316L Stainless Steel, Acta. Metall. Sin-Engl., 2019, 32(5), p 585–598.

    Article  CAS  Google Scholar 

  22. J. Hesketh, E. Dickinson, M.L. Martin, G. Hinds, and A. Turnbull, Influence of H2S on the Pitting Corrosion of 316L Stainless Steel in Oilfield Brine, Corros. Sci., 2021, 182, p 109265.

    Article  CAS  Google Scholar 

  23. Z. Cui, L. Wang, H. Ni, W. Hao, C. Man, S. Chen, X. Wang, Z. Liu, and X. Li, Influence of Temperature on the Electrochemical and Passivation Behavior of 2507 Super Duplex Stainless Steel in Simulated Desulfurized Flue Gas Condensates, Corros. Sci., 2017, 118, p 31–48.

    Article  CAS  Google Scholar 

  24. Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y.F. Cheng, and X. Li, Passivation Behavior and Surface Chemistry of 2507 Super Duplex Stainless Steel in Artificial Seawater: Influence of Dissolved Oxygen and pH, Corros. Sci., 2019, 150, p 218–234.

    Article  CAS  Google Scholar 

  25. Z. Jin, H. Ge, W. Lin, Y. Zong, S. Liu, and J. Shi, Corrosion Behaviour of 316L Stainless Steel and Anti-Corrosion Materials in a High Acidified Chloride Solution, Appl. Surf. Sci., 2014, 322, p 47–56.

    Article  CAS  Google Scholar 

  26. Z. Wang, L. Zhang, X. Tang, Z. Zhang, and M. Lu, The Surface Characterization and Passive Behavior Of Type 316L Stainless Steel in H2S-Containing Conditions, Appl. Surf. Sci., 2017, 423, p 457–464.

    Article  CAS  Google Scholar 

  27. J.-S. Lee, Y. Kitagawa, T. Nakanishi, Y. Hasegawa, and K. Fushimi, Passivation Behavior of Type-316L Stainless Steel in the Presence of Hydrogen Sulfide Ions Generated from a Local Anion Generating System, Electrochim. Acta., 2016, 220, p 304–311.

    Article  CAS  Google Scholar 

  28. L. Jinlong, L. Tongxiang, and W. Chen, Surface Enriched Molybdenum Enhancing the Corrosion Resistance of 316L Stainless Steel, Mater. Lett., 2016, 171, p 38–41.

    Article  Google Scholar 

  29. Y.-S. Lu, C.-W. Lu, Y.-T. Lin, H.-W. Yen, and Y.-L. Lee, Corrosion Behavior and Passive Film Characterization of Fe50Mn30Co10Cr10 Dual-Phase High-Entropy Alloy in Sulfuric Acid Solution, J. Electrochem. Soc., 2020, 167(8), p 081506.

    Article  CAS  Google Scholar 

  30. Z. Wang, L. Zhang, Z. Zhang, and M. Lu, Combined Effect of pH and H2S on the Structure of Passive Film Formed on Type 316L Stainless Steel, Appl. Surf. Sci., 2018, 458, p 686–699.

    Article  CAS  Google Scholar 

  31. Z. Wang, Z. Feng, X.-H. Fan, and L. Zhang, Pseudo-Passivation Mechanism of CoCrFeNiMo0.01 High-Entropy Alloy in H2S-Containing Acid Solutions, Corros. Sci., 2021, 179, p 109146.

    Article  CAS  Google Scholar 

  32. G. Šekularac and I. Milošev, Corrosion of Aluminium Alloy AlSi7Mg0.3 in Artificial Sea Water with Added Sodium Sulphide, Corros. Sci., 2018, 144, p 54–73.

    Article  Google Scholar 

  33. C.-J. Park and H.-S. Kwon, Effects of aging at 475 C on Corrosion Properties of Tungsten-Containing Duplex Stainless Steels, Corros. Sci., 2002, 44(12), p 2817–2830.

    Article  CAS  Google Scholar 

  34. R. Silva, G. Vacchi, C. Kugelmeier, I. Santos, A. Mendes Filho, D. Magalhães, C. Afonso, V. Sordi, and C. Rovere, New Insights into the Hardening and Pitting Corrosion Mechanisms of Thermally Aged Duplex Stainless steel at 475° C: A Comparative Study Between 2205 and 2101 Steels, J. Mater. Sci. Technol., 2022, 98, p 123–135.

    Article  Google Scholar 

  35. Y. Shi, C. Peng, Y. Feng, R. Wang, and N. Wang, Microstructure and Electrochemical Corrosion Behavior of Extruded Mg–Al–Pb–La alloy as Anode for Seawater-Activated Battery, Mater. Des., 2017, 124, p 24–33.

    Article  CAS  Google Scholar 

  36. H. Yang, L. Wu, B. Jiang, W. Liu, J. Song, G. Huang, D. Zhang, and F. Pan, Clarifying the Roles of Grain Boundary and Grain Orientation on the Corrosion and Discharge Processes of α-Mg Based Mg-Li Alloys for Primary Mg-air Batteries, J. Mater. Sci. Technol., 2021, 62, p 128–138.

    Article  CAS  Google Scholar 

  37. G. Frankel, Pitting Corrosion of Metals: A Review of the Critical Factors, J. Electrochem. Soc., 1998, 145(6), p 2186.

    Article  CAS  Google Scholar 

  38. R. Silva, C. Kugelmeier, G. Vacchi, C.M. Junior, I. Dainezi, C. Afonso, A. Mendes Filho, and C. Rovere, A Comprehensive Study of the Pitting Corrosion Mechanism of Lean Duplex Stainless Steel Grade 2404 Aged at 475 °C, Corros. Sci., 2021, 191, p 109738.

    Article  CAS  Google Scholar 

  39. A. Davoodi, M. Pakshir, M. Babaiee, and G.R. Ebrahimi, A Comparative H2S Corrosion Study of 304L and 316L Stainless Steels in Acidic Media, Corros. Sci., 2011, 53(1), p 399–408.

    Article  CAS  Google Scholar 

  40. G. Hinds, L. Wickström, K. Mingard, and A. Turnbull, Impact of Surface Condition on Sulphide Stress Corrosion Cracking of 316L Stainless Steel, Corros. Sci., 2013, 71, p 43–52.

    Article  CAS  Google Scholar 

  41. Y. Zhou and D.L. Engelberg, Fast Testing of Ambient Temperature Pitting Corrosion in Type 2205 Duplex Stainless Steel by Bipolar Electrochemistry Experiments, Electrochem. Commun., 2020, 117, p 106779.

    Article  CAS  Google Scholar 

  42. Z. Wang, G.-H. Zhang, X.-H. Fan, J. Jin, L. Zhang, and Y.-X. Du, Corrosion Behavior and Surface Characterization of an Equiatomic CoCrFeMoNi High-Entropy Alloy Under Various pH Conditions, J. Alloys Compd., 2022, 900, p 163432.

    Article  CAS  Google Scholar 

  43. Y. Lu, J. Dong and W. Ke, Effects of Cl Ions on the Corrosion Behaviour of Low Alloy Steel in Deaerated Bicarbonate Solutions, J. Mater. Sci. Technol., 2016, 32(4), p 341–348.

    Article  CAS  Google Scholar 

  44. F. Di Quarto and M. Santamaria, Semiconductor Electrochemistry Approach to Passivity and Passivity Breakdown of Metals and Metallic Alloys, Corros. Eng. Sci. Techn., 2004, 39(1), p 71–81.

    Article  Google Scholar 

  45. H. Engell, Stability and Breakdown Phenomena of Passivating Films, Electrochim. Acta., 1977, 22(9), p 987–993.

    Article  CAS  Google Scholar 

  46. M.S. Islam, K. Otani, and M. Sakairi, Effects of Metal Cations on Mild Steel Corrosion in 10 mM Cl− Aqueous Solution, Corros. Sci., 2018, 131, p 17–27.

    Article  CAS  Google Scholar 

  47. D.H. Xia, Z. Qin, S. Song, D. Macdonald, and J.L. Luo, Combating Marine Corrosion on Engineered Oxide Surface by Repelling, Blocking and Capturing Cl: A Mini Review, Corros. Sci., 2021, 2, p 1–7.

    Google Scholar 

  48. Z. Feng, X. Cheng, C. Dong, L. Xu, and X. Li, Passivity of 316L Stainless Steel in Borate Buffer Solution Studied by Mott-Schottky Analysis, Atomic Absorption Spectrometry and x-ray Photoelectron Spectroscopy, Corros. Sci., 2010, 52(11), p 3646–3653.

    Article  CAS  Google Scholar 

  49. P. Marcus, Surface Science Approach of Corrosion Phenomena, Electrochim. Acta., 1998, 43(1–2), p 109–118.

    Article  CAS  Google Scholar 

  50. D. Shoesmith, P. Taylor, M. Bailey, and B. Ikeda, Electrochemical Behaviour of Iron in Alkaline Sulphide Solutions, Electrochim. Acta., 1978, 23(9), p 903–916.

    Article  CAS  Google Scholar 

  51. H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao, and L. Niu, The Influence of Hydrogen Sulfide on Corrosion of Iron Under Different Conditions, Corros. Sci., 2000, 42(10), p 1669–1683.

    Article  CAS  Google Scholar 

  52. H. Ma, X. Cheng, S. Chen, C. Wang, J. Zhang, and H. Yang, An ac Impedance Study of the Anodic Dissolution of Iron in Sulfuric Acid Solutions Containing Hydrogen Sulfide, J. Electroanal. Chem., 1998, 451(1–2), p 11–17.

    Article  CAS  Google Scholar 

  53. X. Cheng, H. Ma, S. Chen, L. Niu, S. Lei, R. Yu, and Z. Yao, Electrochemical Behaviour of Chromium in Acid Solutions with H2S, Corros. Sci., 1999, 41(4), p 773–788.

    Article  CAS  Google Scholar 

  54. X. Cheng, H. Ma, S. Chen, X. Chen, and Z. Yao, Corrosion of Nickel in acid Solutions with Hydrogen Sulphide, Corros. Sci., 2000, 42(2), p 299–311.

    Article  CAS  Google Scholar 

  55. H. Luo, C. Dong, K. Xiao, and X. Li, The Passive Behaviour of Ferritic Stainless Steel Containing Alloyed Tin IN Acidic Media, RSC. Adv., 2016, 6(12), p 9940–9949.

    Article  CAS  Google Scholar 

  56. R. Newman, W. Wong, H. Ezuber, and A. Garner, Pitting of Stainless Steels by Thiosulfate Ions, Corros., 1989, 45(4), p 282–287.

    Article  CAS  Google Scholar 

  57. W. Li, T. Guo, L. Xu, L. Chen, B. Jiang, X. Wang, H. Wu, and L. Qiao, Promotion of Pitting Corrosion at Hydrogen-Enriched α/γ Phase Boundaries in Austenitic Stainless Steel Weld Joints, Acta. Mater., 2022, 227, p 117728.

    Article  CAS  Google Scholar 

  58. I. Betova, M. Bojinov, O. Hyökyvirta, and T. Saario, Effect of Sulphide on the Corrosion Behaviour of AISI 316L Stainless Steel and its Constituent Elements in Simulated Kraft Digester Conditions, Corros. Sci., 2010, 52(4), p 1499–1507.

    Article  CAS  Google Scholar 

  59. K.R. Chasse and P.M. Singh, Corrosion Study of Super Ferritic Stainless Steel UNS S44660 (26Cr-3Ni-3Mo) and Several Other Stainless Steel Grades (UNS S31603, S32101, and S32205) in Caustic Solution Containing Sodium Sulfide, Metall. Mater. Trans. A., 2013, 44(11), p 5039–5053.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (52101067) and Fundamental Research Funds for the Central Universities (FRF-TP-20-098A1).

Author information

Authors and Affiliations

Authors

Contributions

GZ: is the principal investigator of the project. He conducted the electrochemical and surface analysis. He planned the scope of work, designed the research plan and finished the manuscript. JJ: conducted the electrochemical. YR: conducted the latest literature research. ZW: worked with the first author to analyze the results and reviewed this article. LZ: worked with the first author to analyze the results.

Corresponding author

Correspondence to Zhu Wang.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Jin, J., Wang, Z. et al. Corrosion Behavior of 2507 Super Duplex Stainless Steel in H2S-Free and H2S-Containing Acidic Environments. J. of Materi Eng and Perform 32, 1185–1195 (2023). https://doi.org/10.1007/s11665-022-07163-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07163-y

Keywords

Navigation