Skip to main content

Advertisement

Log in

Corrosion Behaviors of S355 Steel under Simulated Tropical Marine Atmosphere Conditions

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Salinity, temperature, humidity and illumination are main factors in determining the corrosion tendency of metallic materials under tropical marine atmosphere environment. In this paper, the weight loss, corrosion products, corrosion morphologies and electrochemical properties of S355 steel under simulated tropical marine atmosphere conditions were investigated. Different corrosion rules can be concluded under different atmospheric corrosion factors. The corrosion rate reaches maximum when the salinity content is 1.75%. S355 steel is easy to be corroded between 30 and 35 °C. The critical humidity of the S355 steel corrosion is 75%. The moisture condensing and illumination realizes dynamic balance at 70 W/m2, suggesting a lowest corrosion rate. In addition, the corrosion morphologies caused by salinity and illumination reveal uniform corrosion, while the corrosion morphologies caused by humidity and temperature show localized pitting corrosion. We believe the findings of this research will support the understanding of tropical marine atmospheric corrosion of metallic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. J. Wu, Y. Qiao, Y. Chen, L. Yang, X. Cao, and S. Jin, Correlation Between Corrosion Films and Corrosion-Related Defects Formed on 316 Stainless Steel at High Temperatures in Pressurized Water, J. Mater. Eng. Perform., 2021, 30, p 3357–3585.

    Article  Google Scholar 

  2. Y. Wang, Y. Luo, H. Xu, and H. Xiao, Corrosion Behavior and Electrochemical Property of Q235A Steel in Treated Water Containing Halide Ions (F−, Cl−) from Nonferrous Industry, J. Cent. South Univ., 2020, 27, p 1224–1234.

    Article  CAS  Google Scholar 

  3. D. Zeng, Z. Huang, Z. Yu, S. Shi, Y. Yi, C. Liu, G. Tian, and Y. Sun, Effects of CO2 Gassy-Supercritical Phase Transition on Corrosion Behaviors of Carbon Steels in Saturated Vapor Environment, J. Cent. South Univ., 2021, 28, p 325–337.

    Article  CAS  Google Scholar 

  4. H. Dai, S. Shi, C. Guo, and X. Chen, Pits Formation and Stress Corrosion Cracking Behavior of Q345R in Hydrofluoric Acid, Corros. Sci., 2020, 166, p 108443.

    Article  CAS  Google Scholar 

  5. X. Lu, Y. Liu, H. Zhao, and Z. Wang, Corrosion Behavior of Brass H62 in Harsh Marine Atmosphere in Nansha Islands, China, J. Mater. Eng. Perform., 2020, 29, p 8156–8164.

    Article  CAS  Google Scholar 

  6. X. Yang, J. Yang, Y. Yang, Q. Li, D. Xu, X. Cheng, and X. Li, Data-Mining and Atmospheric Corrosion Resistance Evaluation of Sn- and Sb-Additional Low Alloy Steel Based on Big Data Technology, Int. J. Miner. Metall. Mater., 2022, 29, p 825–835.

    Article  CAS  Google Scholar 

  7. A. Castañeda, F. Corvo, I. Pech, C. Valdés, R. Marrero, and E.D. Angel-Meraz, Atmospheric Corrosion in an Oil Refinery Located on a Tropical Island Under New Pollutant Situation, J. Mater. Eng. Perform., 2021, 30, p 4529–4542.

    Article  Google Scholar 

  8. C. Hai, Z. Wang, F. Lu, S. Zhang, C. Du, X. Cheng, and X. Li, Analysis of Corrosion Evolution in Carbon Steel in the Subtropical Atmospheric Environment of Sichuan, J. Mater. Eng. Perform., 2021, 30, p 8014–8022.

    Article  CAS  Google Scholar 

  9. W. Sun, C. Xing, X. Tang, Y. Zuo, Y. Tang, and X. Zhao, Comparative Study on the Degradation of a Zinc-Rich Epoxy Primer/Acrylic Polyurethane Coating in Different Simulated Atmospheric Solutions, J. Coat. Technol. Res., 2021, 18, p 397–413.

    Article  CAS  Google Scholar 

  10. M. Guo, J. Tang, T. Gu, C. Peng, Q. Li, C. Pan, and Z. Wang, Corrosion Behavior of 316L Stainless Steels Exposed to Salt Lake Atmosphere of Western China for 8 Years, Acta Metall. Sin., 2021, 34, p 555–564.

    Article  CAS  Google Scholar 

  11. L. Pang, Z. Wang, W. Emori, and Y. Zheng, Under-Deposit Corrosion of Carbon Steel Beneath Full Coverage of CaCO3 Deposit Layer Under Different Atmospheres, J. Mater. Eng. Perform., 2021, 30, p 7752–7563.

    Article  Google Scholar 

  12. B.G. Koushika, N.V. den Steen, M.H. Mamme, Y.V. Ingelgem, and H. Terryn, Review on Modelling of Corrosion Under Droplet Electrolyte for Predicting Atmospheric Corrosion Rate, J. Mater. Sci. Technol., 2021, 62, p 254–267.

    Article  Google Scholar 

  13. Y. Xu, Y. Huang, F. Cai, D. Lu, and X. Wang, Study on Corrosion Behavior and Mechanism of AISI 4135 Steel in Marine Environments Based on Field Exposure Experiment, Sci. Total. Environ., 2022, 830, p 154864.

    Article  CAS  Google Scholar 

  14. A. Momber, P. Plagemann, and V. Stenzel, Performance and Integrity of Protective Coating Systems for Offshore Wind Power Structures after Three Years Under Offshore Site Conditions, Renew. Energy, 2015, 74, p 606–617.

    Article  Google Scholar 

  15. R. Melchers, Long-Term Corrosion of Cast Irons and Steel in Marine and Atmospheric Environments, Corros. Sci., 2013, 68, p 186–194.

    Article  CAS  Google Scholar 

  16. Y. Fan, W. Liu, S. Li, T. Chowwanonthapuny, B. Wongpat, Y. Zhao, B. Dong, T. Zhang, and X. Li, Evolution of Rust Layers on Carbon Steel and Weathering Steel in High Humidity and Heat Marine Atmospheric Corrosion, J. Mater. Sci. Technol., 2020, 39, p 190–199.

    Article  Google Scholar 

  17. C. Soares, Y. Garbatov, A. Zayed, and G. Wang, Influence of Environmental Factors on Corrosion of Ship Structures in Marine Atmosphere, Corros. Sci., 2009, 51, p 2014–2026.

    Article  CAS  Google Scholar 

  18. M. Babutzka, J. Mietz, and A. Burkert, Investigation of the Salinization of Steel Surfaces in Marine Environment, Mater. Corros., 2019, 70, p 1016–1025.

    Article  CAS  Google Scholar 

  19. H. Ma, Y. Fan, Z. Liu, C. Du, and X. Li, Effect of Pre-Strain on the Electrochemical and Stress Corrosion Cracking Behavior of E690 Steel in Simulated Marine Atmosphere, Ocean Eng., 2019, 182, p 188–195.

    Article  Google Scholar 

  20. Y. Lian, J. Zhang, P. Ji, Z. Zhang, M. Ma, C. Zhao, and J. Huang, Effect of Tempering Treatment on Atmospheric Corrosion Behavior of 3Cr13 Martensitic Stainless Steel in Marine Environment, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-06597-8

    Article  Google Scholar 

  21. Y. Seechurn, B.Y.R. Surnam, and J.A. Wharton, Marine Atmospheric Corrosion of Carbon Steel in the Tropical Microclimate of Port Louis, Mater. Corros., 2022 https://doi.org/10.1002/maco.202112871

    Article  Google Scholar 

  22. N. Li, W. Zhang, H. Xu, Y. Cai, and X. Yan, Corrosion Behavior and Mechanical Properties of 30CrMnSiA High-Strength Steel Under an Indoor Accelerated Harsh Marine Atmospheric Environment, Materials, 2022, 15, p 629.

    Article  CAS  Google Scholar 

  23. G. Vukelic, G. Vizentin, S. Ivosevic, and Z. Bozic, Analysis of Prolonged Marine Exposure on Properties of AH36 Steel, Eng. Fail. Anal., 2022, 135, p 106132.

    Article  CAS  Google Scholar 

  24. J. Guerra, A. Castañeda, F. Corvo, J. Howland, and J. Rodríguez, Atmospheric Corrosion of Low Carbon Steel in a Coastal Zone of Ecuador: Anomalous Behavior of Chloride Deposition Versus Distance from the Sea, Mater. Corros., 2019, 70, p 444–460.

    Article  CAS  Google Scholar 

  25. M. Sun, Y. Pang, C. Du, X. Li, and Y. Wu, Optimization of Mo on the Corrosion Resistance of Cr-advanced Weathering Steel Designed for Tropical Marine Atmosphere, Constr. Build. Mater., 2021, 302, p 124346.

    Article  CAS  Google Scholar 

  26. J.A. Jaén, K. Guzmán, J. Iglesias, and G.C. Manrique, Ten Years Outdoor Exposure of Steel in an Urban and Coastal Tropical Atmosphere, Corros. Eng. Sci. Technol., 2021, 56, p 522–529.

    Article  Google Scholar 

  27. M. Sun, C. Du, Z. Liu, C. Liu, X. Li, and Y. Wu, Fundamental Understanding on the Effect of Cr on Corrosion Resistance of Weathering Steel in Simulated Tropical Marine Atmosphere, Corros. Sci., 2021, 186, p 109427.

    Article  CAS  Google Scholar 

  28. B. Valdez, J. Ramirez, A. Eliezer, M. Schorr, R. Ramos, and R. Salinas, Corrosion Assessment of Infrastructure Assets in Coastal Seas, J. Mar. Sci. Eng., 2016, 15, p 124–134.

    Google Scholar 

  29. L. Ainara, B. Raquel, and L. José, Evaluation of Protective Coatings for High-Corrosivity Category Atmospheres in Offshore Applications, Materials, 2019, 12, p 1325.

    Article  Google Scholar 

  30. R. Vera, O. Rincón, M. Bagnara, N. Romero, R. Araya, and S. Ossandón, Tropical/Non-Tropical Marine Environments Impact on the Behaviour of Carbon Steel and Galvanised Steel, Mater. Corros., 2018, 69, p 614–625.

    Article  CAS  Google Scholar 

  31. N. Palsson, K. Wongpinkaew, P. Khamsuk, S. Sorachot, and W. Pongsaksawad, Outdoor Atmospheric Corrosion of Carbon Steel and Weathering Steel Exposed to the Tropical- Coastal Climate of Thailand, Mater. Corros., 2019, 71, p 1019–1034.

    Article  Google Scholar 

  32. R. Melchers, The Effect of Corrosion on the Structural Reliability of Steel Offshore Structures, Corros. Sci., 2005, 47, p 2391–2410.

    Article  CAS  Google Scholar 

  33. Y. Liu, M. Liu, X. Lu, and Z. Wang, Effect of Temperature and Ultraviolet Radiation on Corrosion Behavior of Carbon Steel in High Humidity Tropical Marine Atmosphere, Mater. Chem. Phys., 2022, 277, p 124962.

    Article  CAS  Google Scholar 

  34. M. Guo, J. Tang, C. Pan, and Z. Wang, The Effect of Temperature and UV Irradiation on Corrosion Behavior of 304 Stainless Steel Exposed to a Simulated Marine Atmosphere, Mater. Corros., 2022 https://doi.org/10.1002/maco.202112963

    Article  Google Scholar 

  35. L. Du, J. Chen, E. Hu, and F. Zeng, A Reactive Molecular Dynamics Simulation Study on Corrosion Behaviors of Carbon Steel in Salt Spray, Comput. Mater. Sci., 2022, 203, p 111142.

    Article  CAS  Google Scholar 

  36. Q. Liu, R. Barker, C. Wang, J. Qian, A. Neville, and F. Pessu, The Corrosion Behaviour of Stainless Steels and Ni-Based Alloys in Nitrate Salts Under Thermal Cycling Conditions in Concentrated Solar Power Plants, Sol. Energy., 2022, 232, p 169–185.

    Article  CAS  Google Scholar 

  37. C. Huang, X. Su, Q. Song, and X. Wang, Effects of Temperature on Acceleration and Simulation of Indoor Corrosion Test of Q235 Carbon Steel, Anti-Corros. Method Mater., 2021, 68, p 564–570.

    Article  Google Scholar 

  38. Z. Wang, Q. Yu, J. Chen, J. Wang, S. Xu, and B. Hu, Atmospheric Corrosion Behavior of P265GH Steel and Q235 Steel Under Dry/Humid/Immersion Alternative Condition, J. Chin. Soc. Corros. Prot., 2014, 34, p 53–58.

    Google Scholar 

Download references

Acknowledgments

This research work was financially supported by the Shandong Provincial Natural Science Foundation (No. ZR2020MD080 and No. ZR2021LFG004), the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2021207), and the National Natural Science Foundation of China (No. 41827805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingjun Zhu or Binbin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Zhang, B., Zheng, M. et al. Corrosion Behaviors of S355 Steel under Simulated Tropical Marine Atmosphere Conditions. J. of Materi Eng and Perform 31, 10054–10062 (2022). https://doi.org/10.1007/s11665-022-07041-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07041-7

Keywords

Navigation