Skip to main content
Log in

Role of BaZrO3 Phase on Microstructure and Ionic Conductivity of 8YSZ

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of BaO insertion on the ionic conductivity of 8 mol.% yttria-stabilized zirconia (8YSZ) was investigated using electrochemical impedance spectroscopy with a frequency response analyzer in the frequency range of 100 mHz-13 MHz and the temperature range of 300-800 °C. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis indicated that while the BaO could be dissolved in the zirconia at 1 wt.%, it did not dissolve in the zirconia above 1 wt.% (5, 10, and 15 wt.%). Furthermore, it led to forming of BaZrO3 secondary phases at the 8YSZ's grain boundaries when the BaO was doped to 8YSZ at the amounts of more than 1 wt.%. This BaZrO3 secondary phase reduced the grain size of 8YSZ from 4.48 to 0.71 μm after sintering at 1400 °C for 50 h. Rietveld analysis showed that the lattice parameter of ZrO2 decreased from 5.138 to 5.130 Å and that of BaZrO3 decreased from 4.189 to 4.181 Å at a content of 15 wt.% BaO. The impedance spectroscopy results showed that zirconia's grain interior conductivity at 400 °C was increased from 1.17 × 10-4 to 1.56 × 10-4 S/cm by 5 wt.% BaO addition, and the grain boundary conductivity at 400 °C was also enhanced from 7.21 × 10-6 to 4.90 × 10-5 S/cm by 1 wt.% BaO addition. Additionally, the grain interior activation energy of 8YSZ was reduced from 1.15 to 0.97 eV by 5 wt.% BaO addition and grain boundary activation energy from 1.50 to 1.17 eV by 1 wt.% BaO addition. The most significant outcome of this study is that the grain interior and grain boundary conductivity of 8YSZ was increased by 33% and 47%, respectively, at low temperatures (400 °C) with the addition of BaO. In conclusion, the present study displayed that BaO addition to 8YSZ improved the ionic conductivity and might be used as a solid electrolyte material in SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Aktas, Influence of Borosilicate Addition on Mechanical Properties and Sinterability of 8YSZ, Acta Phys. Pol. A, 2016, 129(4), p 677–679.

    Article  Google Scholar 

  2. B. Aktaş and S. Tekeli, Ionic conductivity of MgAl2O4-doped 8YSZ ceramics, Arab. J. Geosci., 2019, 12, p 478.

    Article  Google Scholar 

  3. E. Ivers-Tiffee, A. Weber, and D. Herbstritt, Materials and technologies for SOFC-components, J. Eur. Ceram. Soc., 2001, 21(10–11), p 1805–1811.

    Article  Google Scholar 

  4. N.P. Bansal and D. Zhu, Thermal conductivity of zirconia–alumina composites, Ceram. Int., 2005, 31(7), p 911–916.

    Article  Google Scholar 

  5. B. Aktaş, S. Tekeli, and S. Salman, Inuence on Static Grain Growth and Sinterability of BaO Addition into 8YSZ, Acta Phys. Pol. A, 2014, 125(2), p 652–655.

    Article  Google Scholar 

  6. S. Kumar, S. Bhunia, and A.K. Ojha, Effect of calcination temperature on phase transformation, structural and optical properties of sol–gel derived ZrO2 nanostructures, Phys. E. Low Dimens. Syst. Nanostruct., 2015, 66, p 74–80.

    Article  Google Scholar 

  7. K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, A. Opalinska, J.D. Fidelus, and W. Lojkowski, Europium doped zirconia luminescence, Opt. Mater., 2010, 32(8), p 827–831.

    Article  Google Scholar 

  8. A.J. Moulson and J.M. Herbert, Electroceramics Materials, Properties, Applications, Wiley, New York, 2003. https://doi.org/10.1002/0470867965

    Book  Google Scholar 

  9. R.C. Buchanan, Ceramics Materials for Electronics, Marcel Dekker Inc, New York, 1991. https://doi.org/10.1002/adma.19920040427

    Book  Google Scholar 

  10. B. Aktas, S. Tekeli, and S. Salman, Improvements in Microstructural and Mechanical Properties of ZrO2 Ceramics After Addition of BaO, Ceram. Int., 2016, 42(3), p 3849–3854.

    Article  Google Scholar 

  11. B. Aktas, S. Tekeli, and S. Salman, Crystallization and Grain Growth Behavior of La2O3-doped Yttria-stabilized Zirconia, Adv Mater Lett., 2014, 5(5), p 260–264.

    Article  Google Scholar 

  12. J. Wu, Defect Chemistry and Proton Conductivity in Ba-based Perovskites Ph.D. dissertation, California Institute of Technology, 2005.

  13. M. Khalid Hossain, T. Yamamoto, and K. Hashizume, Effect of sintering conditions on structural and morphological properties of Y- and Co-doped BaZrO3 proton conductors, Ceram. Int., 2021, 47(19), p 27177–27187.

    Article  Google Scholar 

  14. H. Ji, B.K. Kim, J.W. Son, K.J. Yoon, and J.H. Lee, Influence of Sintering Activators on Electrical Property of BaZr085Y015O3-δ Proton-Conducting Electrolyte, J. Power Sources, 2021, 507, p 230296.

    Article  Google Scholar 

  15. M.K. Hossain, R. Chanda, A. El-Denglawey, T. Emrose, M.T. Rahman, M.C. Biswas, and K. Hashizume, Recent Progress in Barium Zirconate Proton Conductors for Electrochemical Hydrogen Device Applications: A Review, Ceram. Int., 2021, 47(17), p 23725–23748.

    Article  Google Scholar 

  16. H. Bao, R. Chen, X. Wang, Y. Yang, T. Lin, X. Wang, X. Ou, Y. Tian, and Y. Ling, Characterization of One-Step Co-Fired BaZr0.8Y0.2O3-δ-La2Ce2O7 Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells, J. Eur. Ceram., 2021, 41(11), p 5531–5540.

    Article  Google Scholar 

  17. P. Khirade, A.V. Raut, R.C. Alange, W.S. Barde, and A.R. Chavan, Structural, Electrical and Dielectric Investigations of cerium Doped Barium Zirconate (BaZrO3) Nano-Ceramics Produced via Green Synthesis: Probable Candidate for Solid Oxide Fuel Cells and Microwave Applications, Phys. B, 2021, 613, 412948.

    Article  Google Scholar 

  18. D.A. Monteiro, M.M. Costa, and R.R.F. Bento, Structural Refinement, Morphological and Electrical Properties of BaZrO3:Bi(Zn1/2Ti1/2)O3 Lead-Free Ceramics, J. Alloys Compd., 2021, 868, 159221.

    Article  Google Scholar 

  19. C.Y.R. Vera, H. Ding, D. Peterson, W.T. Gibbons, M. Zhou, and D. Ding, A Mini-Review on Proton Conduction of BaZrO3-Based Perovskite Electrolytes, J. Phys. Energy, 2021, 3(3), p 032019.

    Article  Google Scholar 

  20. A. Uthayakumar, M. Kavithanjali, K. Sandhya, N. Ponpandian, and K. SureshBabu, The Rare Earth Dopant (La, Gd, Sm & Y) modulated Grain Boundary Energy Barrier Suppression in BaZrO3-BaCeO3 Solid Solution, J. Alloys Compd., 2021, 864, p 158098.

    Article  Google Scholar 

  21. J.A. Wrubel, J. Gifford, Z. Ma, H. Ding, D. Ding, and T. Zhu, Modeling the Performance and Faradaic Efficiency of Solid Oxide Electrolysis Cells Using Doped Barium Zirconate Perovskite Electrolytes, Int. J. Hydrog. Energy, 2021, 46(21), p 11511–11522.

    Article  Google Scholar 

  22. K. Ueno, N. Hatada, D. Han, K. Toyoura, and T. Uda, Reexamination of the Phase Diagram of the BaO-ZrO2-Y2O3 System: Investigation of the Presence of Separate Region in Y-doped BaZrO3 Solid Solution and the Dissolution of Zr in Ba3Y4O9, J. Solid State Electrochem., 2020, 24, p 1523–1538.

    Article  Google Scholar 

  23. F.M. Draber, C. Ader, J.P. Arnold, S. Eisele, S. Grieshammer, S. Yamaguchi, and M. Martin, Nanoscale Percolation in Doped BaZrO3 for High Proton Mobility, Nat. Mater., 2020, 19, p 338–346.

    Article  Google Scholar 

  24. S. Kasamatsu, O. Sugino, T. Ogawa, and A. Kuwabara, Dopant Arrangements in Y-Doped BaZrO3 Under Processing Conditions and their Impact on Proton Conduction: a Large-Scale First-Principles Thermodynamics Study, J. Mater. Chem. A, 2020, 8(25), p 2050–7488.

    Article  Google Scholar 

  25. S.A. Rasaki, C. Liu, C. Lao, and Z. Chen, A Review of Current Performance of Rare Earth Metal-Doped Barium Zirconate Perovskite: The Promising Electrode and Electrolyte Material for the Protonic Ceramic Fuel Cells, Prog. Solid. State Ch., 2021, 63, 100325.

    Article  Google Scholar 

  26. S. Tao and J.T.S. Irvine, Conductivity Studies of Dense Yttrium-Doped BaZrO3 Sintered at 1325 °C, J. Solid State Chem., 2007, 180, p 3493–3503.

    Article  Google Scholar 

  27. J.S. Park, J.H. Lee, H.W. Lee, and B.K. Kim, Low Temperature Sintering of BaZrO3-Based Proton Conductors for Intermediate Temperature Solid Oxide Fuel Cells, Solid State Ionics, 2010, 181, p 163–167.

    Article  Google Scholar 

  28. P. Babilo, T. Uda, and S.M. Haile, Processing of Yttrium-Doped Barium Zirconate for High Proton Conductivity, J. Mater. Res., 2007, 22(05), p 1322–1330.

    Article  Google Scholar 

  29. A. Yadav, R. Pyare, T. Maiyalagan, and P. Singh, Synthesis, Characterization, and Ionic Conductivity Studies of Simultaneously Substituted K- and Ga-Doped BaZrO3, ACS Omega, 2021, 6, p 30327–30334.

    Article  Google Scholar 

  30. S. Tekeli, B. Aktaş, and M. Küçüktüvek, Microstructural and Mechanical Properties of Er2O3-ZrO2 Ceramics with Different Er2O3 Contents, High Temp. Mater. Proc., 2012, 31(6), p 701–706.

    Article  Google Scholar 

  31. B. Aktas, S. Tekeli, and S. Salman, Synthesis and Properties of La2O3-Doped 8 mol% Yttria-Stabilized Cubic Zirconia, J. Mater. Eng. Perform., 2014, 23(1), p 294–301.

    Article  Google Scholar 

  32. B. Aktas and S. Tekeli, Influence of Co3O4 Addition on the Ionic Conductivity and Microstructural Properties of Yttria-Stabilized Zirconia (8YSZ), Int. J. Mater. Res., 2014, 105(6), p 577–583.

    Article  Google Scholar 

  33. B. Aktas, Microstructure, Mechanical and Electrical Properties of CuO Doped 8YSZ, High Temp. Mater. Proc., 2013, 32(6), p 551–556.

    Article  Google Scholar 

  34. J. Brezinska-Miecznik, K. Haberko, and M.M. Bucko, Barium Zirconate Ceramic Powder Synthesis by Thecoprecipitation–Calcination Technique, Mater. Lett., 2002, 56, p 273–278.

    Article  Google Scholar 

  35. D. Schultze, Differentialthermoanalyse (Differential Thermal Analysis), VEB Deutscher Verlag der Wissenschaften, Berlin, 1971 https://doi.org/10.1002/anie.197001782

    Article  Google Scholar 

  36. M.K. Hossain, T. Yamamoto, and K. Hashizume, Effect of Sintering Conditions on Structural and Morphological Properties of Y- and Co-Doped BaZrO3 Proton Conductors, Ceram. Int., 2021, 47(19), p 27177–27187.

    Article  Google Scholar 

  37. M. Miyayama, H. Yanagida, and A. Asada, Effects of Al2O3 Additions on Resistivity and Microstructure of Yttria-Stabilized Zirconia, Am. Ceram. Soc. Bull., 1985, 64(4), p 660–664.

    Google Scholar 

  38. J.E. Bauerle, Study of Solid Electrolyte Polarization by a Complex Admittance Method, J. Phys. Chem. Solids, 1969, 30(12), p 2657–2670.

    Article  Google Scholar 

  39. Y. Li, M.S. Liu, J.H. Gong, Y.F. Chen, Z.L. Tang, and Z.T. Zhang, Grain-Boundary Effect in Zirconia Stabilized with Yttria and Calcia by Electrical Measurements, Mater. Sci. Eng. B, 2003, 103(2), p 108–114.

    Article  Google Scholar 

  40. M. Gödickemeier, B. Michel, A. Orliukas, P. Bohac, K. Sasaki, L. Gauckler, H. Heinrich, P. Schwander, G. Kostorz, H. Hofmann, and O. Frei, Effect of Intergranular Glass Films on the Electrical Conductivity of 3Y-TZP, J. Mater. Res., 1994, 9, p 1228–1240.

    Article  Google Scholar 

  41. M. Aoki, Y.M. Chiang, I. Kosacki, L.J.R. Lee, H. Tuller, and Y. Liu, Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia, J. Am. Ceram. Soc., 1996, 79(5), p 1169–1180.

    Article  Google Scholar 

  42. M.J. Verkerk, B.J. Middelhuis, and A.J. Burggraaf, Effect of Grain Boundaries on the Conductivity of High-Purity ZrO2-Y2O3 Ceramics, Solid State Ion., 1982, 6, p 159–170.

    Article  Google Scholar 

  43. B. Aktas, S. Tekeli, and M. Kucuktuvek, Electrical Conductivity of Er2O3-Doped c-ZrO2 Ceramics, J. Mater. Eng. Perform., 2014, 23(1), p 349–355.

    Article  Google Scholar 

  44. X. Guo and J. Maier, Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis, J. Electrochem. Soc., 2001, 148(3), p E121–E126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Aktas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktas, B., Tekeli, S. & Salman, S. Role of BaZrO3 Phase on Microstructure and Ionic Conductivity of 8YSZ. J. of Materi Eng and Perform 31, 8981–8988 (2022). https://doi.org/10.1007/s11665-022-06916-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06916-z

Keywords

Navigation