Skip to main content

Advertisement

Log in

Effect of Intermetallic Compounds on the Microstructure, Mechanical Properties, and Tribological Behaviors of Pure Aluminum by Adding High-Entropy Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A novel aluminum matrix composites (AMCs) reinforced by multiphase intermetallic compounds were fabricated through a conventional casting approach. The microstructure, compression properties and tribological behavior of the AMCs were detailed studied by the scanning electron microscope (SEM), x-ray diffraction (XRD), and electron probe microanalysis (EPMA). The results demonstrated that the fraction of precipitated multiphase intermetallic compounds gradually increased with the increase of high-entropy alloy (HEA) adding content, and the grain size of α-Al obviously was reduced. The irregular multiphase intermetallic compounds, such as Al70Cr20Ni10 and AlTiCrSi, are distributed in the Al matrix. However, the Al2Cu and Al7Cu4Ni distributed in inter-dendrites of α-Al. In addition, the compression strength of AMCs reinforced by 20.0 wt.% HEA addition was significantly enhanced to 530 MPa due to the precipitation of multiphase intermetallic compounds. Meanwhile, its compression strain was higher than 25%. Compared with pure Al, the microhardness of AMCs was extremely increased to 160 HV when the addition content of HEA was up to 20.0 wt.%. When the addition amount of HEA reached 10.0 wt.%, the COF of the ACMs was decreased by 51.6% from 0.766 to 0.371. When the HEA content was up to 20.0 wt.%, the wear rate reached the minimum of 4.87 × 10−5 mm3/N·m, which was reduced by 31.9% compared with pure Al. Furthermore, the strengthening effect and wear mechanism of AMCs reinforced by HEA addition was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. C. Suryanarayana, and Nasser Al-Aqeeli, Mechanically Alloyed Nanocomposites, Prog. Mater. Sci., 2013, 58, p 383–502.

    Article  CAS  Google Scholar 

  2. J.W. Zhu, W.M. Jiang, G.Y. Li, F. Guan, Y. Yu, and Z.T. Fan, Microstructure and Mechanical Properties of SiCp/Al6082 Aluminum Matrix Composites Prepared By Squeeze Casting Combined With Stir Casting, J. Mater. Process. Technol., 2020, 283, p 116699.

    Article  CAS  Google Scholar 

  3. W.M. Jiang, J.W. Zhu, G.Y. Li, F. Guan, Y. Yu, and Z.T. Fan, Enhanced Mechanical Properties of 6082 Aluminum Alloy Via SiC Addition Combined with Squeeze Casting, J. Mater. Sci. Technol., 2021, 188, p 119–131.

    Google Scholar 

  4. Y. Tang, Z. Chen, A. Borbely, G. Ji, S.Y. Zhong, D. Schryvers, V. Ji, and H.W. Wang, Quantitative Study of Particle Size Distribution in an in-Situ Grown Al-TiB2 Composite by Synchrotron X-Ray Diffraction and Electron Microscopy, Mater. Char., 2015, 102, p 131–136.

    Article  CAS  Google Scholar 

  5. Y. Yang, S.F. Wen, Q.S. Wei, W. Li, J. Liu, and Y.S. Shi, Effect of Scanline Spacing on Texture, Phase and Nano Hardness of TiAl/TiB2 Metal Matrix Composites Fabricated by Selective Laser Melting, J. Alloy. Compd., 2017, 728, p 803–814.

    Article  CAS  Google Scholar 

  6. F. Ali, S. Scudino, M.S. Anwar, R.N. Shahid, V.C. Srivastava, V. Uhlenwinkel, M. Stoica, G. Vaughan, and J. Eckert, Al-Based Metal Matrix Composites Reinforced with Al-Cu-Fe Quasi Crystalline Particles: Strengthening by Interfacial Reaction, J. Alloy. Compd., 2014, 607, p 274–279.

    Article  CAS  Google Scholar 

  7. C.X. Zhang, D.X. Yao, J.W. Yin, K.H. Zuo, Y.F. Xia, and H.Q. Liang, Effects of β-Si3N4 Whiskers Addition on Mechanical Properties and Tribological Behaviors of Al Matrix Composites, Wear, 2019, 430–431, p 145–156.

    Article  CAS  Google Scholar 

  8. J.J. Zhang, S.C. Liu, Y.P. Lu, Y. Dong, and T.J. Li, Fabrication Process and Bending Properties of Carbon Fibers Reinforced Al-Alloy Matrix Composites, J. Mater. Process. Technol., 2016, 231, p 366–373.

    Article  CAS  Google Scholar 

  9. C.R. Si, X.L. Tang, X.J. Zhang, J.B. Wang, and W. Wu, Microstructure and Mechanical Properties of Particle Reinforced Metal Matrix Composites Prepared by Gas-Solid Two-Phase Atomization and Deposition Technology, Mater. Lett., 2017, 201, p 78–81.

    Article  CAS  Google Scholar 

  10. S.F. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, and Y. Fu, Strengthening Behavior of In Situ-Synthesized (TiC-TiB)/Ti Composites by Powder Metallurgy and Hot Extrusion, Mater. Des., 2016, 95, p 127–132.

    Article  CAS  Google Scholar 

  11. G.Y. Li, W.M. Jiang, F. Guan, J.W. Zhu, Z. Zhang, and Z.T. Fan, Microstructure Mechanical Properties and Corrosion Resistance of A356 Aluminum/AZ91D Magnesium Bimetal Prepared by a Compound Casting Combined with a Novel Ni-Cu Composite Interlayer, J. Mater. Process. Tech., 2021, 288, p 116874.

    Article  CAS  Google Scholar 

  12. X.L. Guo, Q. Guo, J.H. Nie, Z.Y. Liu, Z.Q. Li, G.L. Fan, D.B. Xiong, Y.S. Su, J.Z. Fan, and D. Zhang, Particle Size Effect on the Interfacial Properties of SiC Particle-Reinforced Al-Cu-Mg Composites, Mater. Sci. Eng. A, 2018, 711, p 643–649.

    Article  CAS  Google Scholar 

  13. S.C. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Adv. Eng. Mater., 2007, 9, p 639–652.

    Article  CAS  Google Scholar 

  14. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, and T.T. Shun, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.

    Article  CAS  Google Scholar 

  15. A. Erdogan, A. Gunen, M.S. Gok, and S. Zeytin, Microstructure and Mechanical Properties of Borided CoCrFeNiAl0.25Ti0.5 High Entropy Alloy Produced by Powder Metallurgy, Vacuum, 2020, 183, p 109820.

    Article  CAS  Google Scholar 

  16. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George, Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy, J. Alloy. Comp., 2015, 623, p 348–353.

    Article  CAS  Google Scholar 

  17. K. Praveen-Kumar, M. Gopi-Krishna, J. Babu-Rao, and N.R.M.R. Bhargava, Fabrication and Characterization of 2024 Aluminum-High Entropy Alloy Composites, J. Alloy. Comp., 2015, 640, p 421–427.

    Article  CAS  Google Scholar 

  18. I. Carcea, R. Chelariu, L. Asavei, N. Cimpoeşu, and R.M. Florea, Investigations on Composites Reinforced with HEA Particles, Mater. Sci. Eng. A, 2017, 227, p 012021.

    Google Scholar 

  19. Z.W. Yuan, W.B. Tian, F.G. Li, Q.Q. Fu, Y.B. Hu, and X.G. Wang, Microstructure and Properties of High-Entropy Alloy Reinforced Aluminum Matrix Composites by Spark Plasma Sintering, J. Alloy. Comp., 2019, 806, p 901–908.

    Article  CAS  Google Scholar 

  20. Z.W. Wang, Y.B. Yuan, R.X. Zheng, K. Ameyama, and C.L. Ma, Microstructures and Mechanical Properties Extruded 2024 Aluminum Alloy Reinforced by FeNiCrCoAl3 Particles, Trans. Nonferrous Met. Soc. China., 2014, 24(7), p 2366–2373.

    Article  CAS  Google Scholar 

  21. M.Q. Luo, D.Z. Zhu, L.F. Qi, Q. Chen, and L.J. Li, Properties of AlxCuFeNiCo (Cr) High Entropy Alloys Particles Reinforced Aluminum Alloy Materials, South. Met., 2016, 6, p 18–22.

    Google Scholar 

  22. G.M. Karthik, S. Panikar, G.D. Janaki-Ram, and R.S. Kottada, Additive Manufacturing of an Aluminum Matrix Composite Reinforced with Nanocrystalline High-Entropy Alloy Particles, Mater. Sci. Eng. A, 2016, 679, p 193–203.

    Article  CAS  Google Scholar 

  23. Z. Tan, L. Wang, Y.F. Xue, P. Zhang, T.Q. Cao, and X.W. Cheng, High-entropy Alloy Particle Reinforced Al-Based Amorphous Alloy Composite with Ultrahigh Strength Prepared by Spark Plasma Sintering, Mater. Des., 2016, 109, p 219–226.

    Article  CAS  Google Scholar 

  24. J. Chen, P.Y. Niu, T. Wei, L. Hao, Y.Z. Liu, X.H. Wang, and Y.L. Peng, Fabrication and Mechanical Properties of AlCoNiCrFe High-Entropy Alloy Particle Reinforced Cu Matrix Composites, J. Alloy. Comp., 2015, 649, p 630–634.

    Article  CAS  Google Scholar 

  25. M. Balakrishnan, I. Dinaharan, K. Kalaiselven, and R. Palanivel, Friction Stir Processing of Al3Ni Intermetallic Particulate Reinforced Cast Aluminum Matrix Composites: Microstructure and Tensile Properties, J. Mater. Res. Technol., 2020, 9, p 4356–4367.

    Article  CAS  Google Scholar 

  26. S.M. Ma, Y.S. Wang, and X.M. Wang, The In-Situ Formation of Al3Ti Reinforcing Particulates in an Al-7wt%Si Alloy and their Effects on Mechanical Properties, J. Alloy. Comp., 2019, 792, p 365–374.

    Article  CAS  Google Scholar 

  27. Q.L. Li, X.P. Bao, S. Zhao, Y.Q. Zhu, Y.F. Lan, X.Y. Feng, and Q. Zhang, The Influence of AlFeNiCrCoTi High-Entropy Alloy on Microstructure, Mechanical Properties and Tribological Behaviors of Aluminum Matrix Composites, Int. J. Metal. Cast., 2020 https://doi.org/10.1007/s40962-020-00462-x

    Article  Google Scholar 

  28. J.H. Pi, Y.P.L. Zhang, and H. Zhang, Microstructure and Property of AlTiCrFeNiCu High-Entropy Alloy, J. Alloy. Compd., 2011, 509, p 5641–5645.

    Article  CAS  Google Scholar 

  29. D. Zhu, L. Qi, and X. Ding, Effect of Reinforcement Volume Fraction and Sintering Temperature on Thermal Conductivity of (AlSiTiCrNiCu)p/6061Al Composites, Rare. Metal. Mat. Eng., 2019, 48, p 614–619.

    CAS  Google Scholar 

  30. R. Sasikumar, and M. Kumar, Redistribution of Particles During Casting of Composite Melts: Effects of Buoyancy and Particle Pushing, Acta Metall. Mater., 1991, 39, p 2503–2508.

    Article  CAS  Google Scholar 

  31. Y. Zhao, S. Zhang, G. Chen, and X. Cheng, Effects of Molten Temperature on the Morphologies of In Situ Al3Zr and ZrB2 Particles and Wear Properties of (Al3Zr+ ZrB2)/Al Composites, Mater. Sci. Eng. A, 2007, 457, p 156–161.

    Article  CAS  Google Scholar 

  32. T.J. Chen, R.Q. Wang, and Y. Ma, Grain Refinement of AZ91D Magnesium Alloy by Al-Ti-B Master Alloy and its Effect on Mechanical Properties, Mater. Des., 2012, 34, p 637–648.

    Article  CAS  Google Scholar 

  33. M. ChulJo, J.H. Choi, J. Yoo, D. Lee, S. Shin, I. Jo, and S.K. Lee, Novel Dynamic Compressive and Ballistic Properties in 7075–T6 Al-matrix Hybrid Composite Reinforced with SiC and B4C Particulates, Compos. Part B., 2019, 174, p 107041.

    Article  CAS  Google Scholar 

  34. T.K. Ye, Y.X. Xu, and J. Ren, Effects of SiC Particle Size on Mechanical Properties of SiC Particle Reinforced Aluminum Metal Matrix Composite, Mater. Sci. Eng. A, 2019, 753, p 146–155.

    Article  CAS  Google Scholar 

  35. S.F. Liu, Y.W. Wang, T. Muthuramalingam, and G. Anbuchezhiyan, Effect of B4C and MoS2 Reinforcement on Micro Structure and Wear Properties of Aluminum Hybrid Composite for Automotive Applications, Compos. Part B., 2019, 176, p 107329.

    Article  CAS  Google Scholar 

  36. Q.C. Fan, B.S. Li, and Y. Zhang, The Microstructure and Properties of (FeCrNiCo)AlxCuy High-Entropy Alloys and their TiC-Reinforced Composites, Mater. Sci. Eng. A, 2014, 598, p 244–250.

    Article  CAS  Google Scholar 

  37. X. Zhang, L.K. Huang, B. Zhang, Y.Z. Chen, and F. Liu, Microstructural Evolution and Strengthening Mechanism of an Al-Si-Mg Alloy Processed by High-Pressure Torsion with Different Heat Treatments, Mater. Sci. Eng. A, 2020, 794, p 139932.

    Article  CAS  Google Scholar 

  38. L. Yuan, J. Han, J. Liu, and Z. Jiang, Mechanical Properties and Tribological Behavior of Aluminum Matrix Composites Reinforced with In-Situ AlB2 Particles, Tribol. Int., 2016, 98, p 41–47.

    Article  CAS  Google Scholar 

  39. K. Kalaiselvan, N. Murugan, and S. Parameswaran, Production and Characterization of AA6061-B4C Stir Cast Composite, Mater. Des., 2011, 32, p 4004–4009.

    Article  CAS  Google Scholar 

  40. A.O. Adegbenjo, B.A. Obadele, and P.A. Olubambi, Densification, Hardness and Tribological Characteristics of MWCNTs Reinforced Ti6Al4V Compacts Consolidated by Spark Plasma Sintering, J. Alloy. Comp., 2018, 749, p 818–833.

    Article  CAS  Google Scholar 

  41. Z. Zhang, L. Zhang, and Y.W. Mai, Modelling Friction and Wear of Scratching Ceramic Particle-Reinforced Metal Composites, Wear, 1994, 176, p 231–237.

    Article  CAS  Google Scholar 

  42. P.K. Rohatgi, S. Ray, and Y. Liu, Tribological Properties of Metal Matrix-Graphite Particle Composites, Int. Mater. Rev., 1992, 37, p 129–152.

    Article  CAS  Google Scholar 

  43. M. Moazami-Goudarzi, and F. Akhlaghi, Wear Behavior of Al 5252 Alloy Reinforced with Micrometric and Nanometric SiC Particles, Tribol. Int., 2016, 102, p 28–37.

    Article  CAS  Google Scholar 

  44. P. Xiao, Y. Gao, F. Xu, C. Yang, Y. Li, Z. Liu, and Q. Zheng, Tribological bEhavior of In-Situ Nanosized TiB2 Particles Reinforced AZ91 Matrix Composite, Tribol. Int., 2018, 128, p 130–139.

    Article  CAS  Google Scholar 

  45. X.Y. Li, and T.K. Tandon, Mechanical Mixing Induced by Sliding Wear of an Al-Si Alloy Against M2 Steel, Wear, 1999, 225–229, p 640–648.

    Article  Google Scholar 

Download references

Acknowledgments

This work financially supports of the National Natural Science Foundation of China (Grant Nos. 52061026; 51561021), the State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology (SKLAB02019007), Key Research and Development Program of Gansu Province (21YF5GA075) and Outstanding Graduate Student “Innovation Star” Project of Gansu (2021CXZX-428, 2021CXZX-435).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Li, Xuepeng Bao or JiQiang Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Qiao, Z., Bao, X. et al. Effect of Intermetallic Compounds on the Microstructure, Mechanical Properties, and Tribological Behaviors of Pure Aluminum by Adding High-Entropy Alloy. J. of Materi Eng and Perform 31, 6697–6710 (2022). https://doi.org/10.1007/s11665-022-06697-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06697-5

Keywords

Navigation