Skip to main content

Advertisement

Log in

Effect of Grain Refiner on Microstructural Feature Influence Hardness and Tensile Properties of Al-7Si Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of grain refiner on microstructural features, casting defects, formation of precipitates and eutectic Si particles, which influence the hardness and tensile properties of Al-Si alloys, is investigated in this study. The A-7Si alloy was prepared through melting and casting route with varying wt.% of Ti up to 0.2%. XRD, SEM and HRTEM analyses characterize the phases and aluminide (TiAl3 and Ti7Al5Si12) precipitates. The thermodynamic analysis, carried out by using FactSage software, confirms the presence of aluminides particle in the microstructure, which is formed at the liquid stage. The microstructure of as-cast Al-7Si alloy contains primary α-Al phase with dendritic morphology and eutectic phase having plate-like eutectic Si particle which is distributed at interdendritic regions. The morphology of primary α-Al grains is altered from dendrite network to fine equiaxed rosette type structure. Secondary dendrite arm spacing (SDAS) is reduced after adding grain refiner (Al-5Ti-1B) to the Al-7Si alloy. The eutectic Si is also refined to fine fibrous type particles. The shrinkage porosity and microcracks are also reduced after the addition of a grain refiner. The yield strength, ultimate tensile strength and elongation to fracture increase from 84, 117 MPa and 16% to 112 MPa, 148 MPa and 22%, respectively, after the addition of 0.1% Ti due to significant reduction in SDAS. Elongation decreases when the percentage of Ti increases more than 0.1%. The fracture mechanism of grain-refined alloy is changed from brittle to ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.J. Jorstad and W.M. Rasmussen, Aluminum Casting Technology. American Foundry Society. 2nd ed. Illinois (IL). (1993) p. 76-77.

  2. H.R. Ammar, A.M. Samuel and F.H. Samuel, Porosity and the Fatigue Behavior of Hypoeutectic and Hypereutectic Aluminum Silicon Casting Alloys, Int. J. Fatigue., 2008, 30(6), p 1024–1035.

    Article  CAS  Google Scholar 

  3. N. Belov, D. Eskin and N. Avxentieva, Constituent Phase Diagrams of the Al-Cu-Fe-Mg-Ni-Si System and Their Application to the Analysis of Aluminium Piston Alloys, Acta. Mater, 2005, 53(17), p 4709–4722.

    Article  CAS  Google Scholar 

  4. J.G. Jung, S.H. Lee, J.M. Lee, Y.H. Cho, S.H. Kim and W.H. Yoon, Improved Mechanical Properties of Near Eutectic Al-Si Piston Alloy Through Ultrasonic Melt Treatment, Mater. Sci. Engg A., 2016, 669, p 187–195.

    Article  CAS  Google Scholar 

  5. N.R. Rathod and J.V. Manghani, Effect of Modifier and Grain Refiner on Cast Al-7Si Alloy: A Review, Int, J. Emerg. Trends Eng. Develop., 2012, 5(2), p 574–581.

    Google Scholar 

  6. K.G. Basavakumar, P.G. Mukunda and M. Chakraborthy, Effect of Melt Treatment on Microstructure and Impact Properties of Al-7Si and Al-7Si-2.5Cu Cast Alloys, Bull. Mater. Sci, 2007, 30, p 439–445.

    Article  CAS  Google Scholar 

  7. Y.P. Lim, Evaluation of Al-5Ti-1B and Al-10Sr in LM6 Sand Castings, J. Achiev. Mater. Manuf. Engg., 2009, 34(1), p 71–78.

    Google Scholar 

  8. S.A. Kori, B.S. Murty and M. Chakraborty, Development of an Efficient Grain Refiner for Al-7Si Alloy and its Modification with Strontium, Mater. Sci. Engg. A., 2000, 283, p 94–104.

    Article  Google Scholar 

  9. K.G. Basavakumar, P.G. Mukunda and M. Chakraborty, Influence of Grain Refinement and Modification on Microstructure and Mechanical Properties of Al-7Si and Al-7Si-2.5Cu Cast Alloys, Mater. Charact, 2008, 59, p 283–289.

    Article  CAS  Google Scholar 

  10. M. Faraji and L. Katgerman, Microstructural Analysis of Modification and Grain Refinement in a Hypoeutectic Al-Si Alloy, Inter. J. Cast. Met. Res., 2009, 22, p 1–4.

    Article  Google Scholar 

  11. M. Kim, Electron Backscattering Diffraction (EBSD) Analysis of Hypereutectic Al-Si Alloys Modified by Sr and Sc, Met. Mater. Int., 2007, 13, p 103–107.

    Article  CAS  Google Scholar 

  12. L. Lu and A.K. Dahle, Effects of Combined Additions of Sr and AlTiB Grain Refiners in Hypoeutectic Al-Si Foundry Alloys, Mater. Sci. & Engg. A., 2006, 288, p 435–436.

    Google Scholar 

  13. G.P. Jones and J. Pearson, Factors Affecting Grain Refinement of Aluminum Using Ti and B Additives, Metall. Trans. B., 1979, 7, p 223–234.

    Article  Google Scholar 

  14. P.S. Mohanty and J.E. Gruzleski, Grain Refinement Mechanisms of Hypoeutectic Al-Si Alloys, Acta. Mater., 1996, 44, p 3749–3760.

    Article  CAS  Google Scholar 

  15. B.S. Murty, S.A. Kori and M. Chakraborty, Grain Refinement of Aluminium and its Alloys by Heterogeneous Nucleation and Alloying, Int. Mater. Rev., 2002, 47, p 3–29.

    Article  CAS  Google Scholar 

  16. T.E. Quested, Understanding Mechanisms of Grain Refinement of Al Alloys by Inoculation, Mater. Sci. Technol., 2004, 20(11), p 1357–1369.

    Article  CAS  Google Scholar 

  17. F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton and M.X. Zhang, Revisiting the Role of Peritectic in Grain Refinement of Al Alloys, Acta. Mater., 2013, 61, p 360–370.

    Article  CAS  Google Scholar 

  18. S.H. Seyed-Ebrahimi and M. Emmy, Effects of Al–5Ti–1B and Al–5Zr Master Alloys on the Structure, Hardness, and Tensile Properties of a Highly Alloyed Aluminum Alloy, Mater. Des., 2010, 31, p 200–209.

    Article  CAS  Google Scholar 

  19. T.E. Quested and A.L. Greer, The Effect of the Size Distribution of Inoculants Particles on as-Cast Grain Size in Aluminium Alloys, Acta. Mater., 2004, 52, p 3859–3868.

    Article  CAS  Google Scholar 

  20. K.T. Kashyap and T. Chandrashekar, Effects and Mechanisms of Grain Refinement in Aluminium Alloys, Bull. Mater. Sci., 2001, 24, p 345–353.

    Article  CAS  Google Scholar 

  21. P. Perrot, Aluminium-Silicon-Titanium Ternary Alloys-A Comprehensive Compendium of Evaluated Constitution Data and Phase Diagram, V Publishers, New York, 1990.

    Google Scholar 

  22. M.F. Mondolfo, Aluminium Alloys: Structure and Properties, Butterworths Pub, London, 1976.

    Google Scholar 

  23. M. Zeren and E. Karakulak, Influence of Ti Addition on the Microstructure and Hardness Properties of Near-Eutectic Al-Si Alloys, J. Alloys. Compds., 2008, 450, p 255–259.

    Article  CAS  Google Scholar 

  24. L. Arnberg, L. Backeraud and H. Klang, Grain Refinement of Aluminum. 1: Production and Properties of Master Alloys of Aluminum-Titanium-Boron Type and Their Ability to Grain Refine Aluminum, Metals. Technol., 1982, 9, p 1–6.

    Article  CAS  Google Scholar 

  25. I.G. Davies, J.M. Dennis and A. Hellawell, The Nucleation of Aluminium Grains in Alloys of Aluminium with Titanium and Boron, Metall. Trans., 1970, 1, p 275–280.

    Article  CAS  Google Scholar 

  26. S.A. Kori, V. Auradi, B.S. Murty and M. Chakraborty, Poisoning and Fading Mechanism of Grain Refinement in Al-7Si Alloy, Materials Forum, 2005, 29, p 387–393.

    CAS  Google Scholar 

  27. Y. Iwahashi, J.T. Wang, Z. Horita, M. Nemoto and T.G. Langdon, Principle of Equi-Channel Angular Pressing for the Processing of Ultra-Fine-Grained Materials, Scrip. Mater., 1996, 35, p 143–146.

    Article  CAS  Google Scholar 

  28. E. Ghassemalia, M. Riestraa, T. Bogdanoffa, B.S. Kumar and S. Seifeddinea, Hall-Petch Equation in a Hypoeutectic Al-Si Cast Alloy: Grain Size vs. Secondary Dendrite Arm Spacing, Proc. Engg., 2017, 207, p 19–24.

    Article  Google Scholar 

  29. R.K. Yajjala, N.M. Inampudi and B.R. Jinugu, Correlation Between SDAS and Mechanical Properties of Al-Si Alloy made in Sand and Slag Moulds, J. Mater. Res. Tech., 2020, 9(2), p 6257–6267.

    Article  CAS  Google Scholar 

  30. L. Cecchini, A. Morri, A. Morri, A. Gamberini and S. Messier, Correlation Between Ultimate Tensile Strength and Solidification Microstructure for the Sand Cast A357 Aluminium Alloy, Mater. Des., 2009, 30, p 4525–4531.

    Article  Google Scholar 

  31. Q.G. Wang and C.H. Cáceres, The Fracture Mode in Al–Si–Mg Casting Alloys, Mater Sci Eng A, 1998, 241(1–2), p 72–82.

    Article  Google Scholar 

  32. S.D. Michael, Science and Engineering of Casting Solidification, Springer, New York (NY), 2002.

    Google Scholar 

  33. Y. Zhang, F. Yan, Y. Zhao, C. Song and H. Hou, Effect of Ti on Microstructure and Mechanical Properties of die-cast Al-Mg-Zn-Si Alloy, Mater. Res. Exp., 2020, 7, p 036526.

    Article  CAS  Google Scholar 

  34. Q.G. Wang, C.H. Caceres and J.R. Griffiths, Damage by Eutectic Particle Cracking in Aluminum Casting Alloys A356/357, Metall. & Mat. Trans. A., 2003, 34, p 2901–2912.

    Article  Google Scholar 

Download references

Acknowledgment

Authors are grateful to the Director of National Institute of Technology (NIT), Durgapur and Director CSIR-National Metallurgical Laboratory (CSIR-NML), Jamshedpur, for their permission to carry out the project work as a joint venture of the two establishments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durbadal Mandal.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, C., Sahoo, K.L., Roy, H. et al. Effect of Grain Refiner on Microstructural Feature Influence Hardness and Tensile Properties of Al-7Si Alloy. J. of Materi Eng and Perform 31, 3262–3273 (2022). https://doi.org/10.1007/s11665-021-06413-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06413-9

Keywords

Navigation