Skip to main content
Log in

Characterization of Friction Stir-Welded Polylactic Acid/Aluminum Composite Primed through Fused Filament Fabrication

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

There are many possible reasons for low weld strength in FSW of thermoplastic; low thermal conductivity, high energy losses in friction stir welding (FSW), material spill-out, involvement of high mechanical forces, etc. To counter strike the above-mentioned issues which weaken the joint's strengths, two strategies have been approached. The first approach is based upon the preparation of aluminum (Al) layers-reinforced Polylactic acid (PLA)/Al composite material which must have high thermal conductivity and crystallinity for improved heat generation in FSW. In the second approach, the FSW has been performed using a semi-consumable pin of similar materials which can compensate for the materials loss and void formation during FSW. Alternating layer composite of (PLA)/Al was manufactured by modified fused filament fabrication (FFF) 3D printing process then welded by FSW process in next steps. In this study, the FSW process was performed by using a semi-consumable pin profile of PLA with varying tool rotation speed (TRS) (800, 1100, and 1400rpm), depth of semi-consumable pin (SPD) (2, 3 and 4 mm), and transverse speed (TVS) (20, 30 and 40mm/min). FSW joints were subjected to mechanical (tensile strength, percentage elongation, and modulus of toughness), morphological (fracture by scanning electron microscopy and surface profiling), structural (Fourier-transform infrared spectroscopy, x-ray diffraction) for optimizing the FSW process parameters. Analytic hierarchy process and genetic algorithm are implemented to acquire a single set of parameters which would result in the best value of tensile properties. The suggested levels are 1400 rpm, 2 mm, and 31.79 mm/min. of TRS, SPD, and TVS, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

ABS:

Acrylonitrile butadiene styrene

AHP:

Analytic hierarchy process

Al:

Aluminum

AM:

Additive manufacturing

EDS:

Energy-dispersive x-ray spectroscopy

FFF:

Fused filament fabrication

FSW:

Friction-stir welding

FTIR:

Fourier-transform infrared spectroscopy

FTS:

Fracture tensile strength

FWHM:

Full width half maxima

GA:

Genetic algorithm

MOT:

Modulus of toughness

PC:

Polycarbonate

PEB:

Percentage elongation at break

PEEK:

Poly-ether-ether ketone

PMMA:

Poly(methyl methacrylate)

PLA:

Polylactic acid

PPS:

Polyphenyl sulfone

SEM:

Scanning electron microscopy

SPD:

Semi-consumable pin depth

STL:

Standard Tessellation Language

TPU:

Thermoplastic Polyurethane

TRS:

Tool rotational speed

TVS:

Transverse speed

UTM:

Universal testing machine

UTS:

Ultimate tensile strength

XRD:

X-ray diffraction

References

  1. F. Lambiase, D. Hamed Aghajani and S. Abdolreza, Friction Stir Welding and Friction Spot Stir Welding Processes of Polymers—State of the Art, Materials, 2020, 13(10), p 2291.

    Article  CAS  Google Scholar 

  2. D. Hamed Aghajani and A. Simchi, Experimental and Thermomechanical Analysis of the Effect of Tool Pin Profile on the Friction Stir Welding of Poly (Methyl Methacrylate) Sheets, J. Manuf. Process, 2018, 34, p 412–423.

    Article  Google Scholar 

  3. D.H. Aghajani, F. Khodabakhshi and A. Simchi, Evaluation of a Polymer-Steel Laminated Sheet Composite Structure Produced by Friction Stir Additive Manufacturing (FSAM) Technology, Polym. Test., 2020, 90, p 106690.

    Article  CAS  Google Scholar 

  4. D.H. Aghajani and A. Simchi, Experimental and Thermomechanical Analysis of Friction Stir Welding of Poly (Methyl Methacrylate) Sheets, Sci. Technol. Weld. Join., 2018, 23(3), p 209–218.

    Article  CAS  Google Scholar 

  5. E. Majid and D.H. Aghajani, Experimental and Thermomechanical Study on FSW of PMMA Polymer T-Joint, Int. J. Adv. Manuf. Technol., 2018, 97(1–4), p 1445–1456.

    Google Scholar 

  6. D.H. Aghajani, A. Simchi and F. Lambiase, Friction Stir Welding of Polycarbonate Lap Joints: Relationship Between Processing Parameters and Mechanical Properties, Polym. Test., 2019, 79, p 105999.

    Article  CAS  Google Scholar 

  7. D.H. Aghajani, A. Eyvazian and A. Simchi, Modeling and Experimental Validation of Material Flow During FSW of Polycarbonate, Mater. Today Commun., 2020, 22, p 100796.

    Article  CAS  Google Scholar 

  8. E. Arameh, A.M. Hamouda, D.H. Aghajani and M. Elyasi, Study on the Effects of Tool Tile Angle, Offset and Plunge Depth on Friction Stir Welding of Poly (Methyl Methacrylate) T-Joint, Proc. Instit. Mech. Eng., Part B: J. Eng. Manuf., 2020, 234(4), p 773–787.

    Article  CAS  Google Scholar 

  9. D.H. Aghajani, E. Garcia and M. Elyasi, Underwater Friction Stir Welding of PC: Experimental Study and Thermo-Mechanical Modelling, J Manuf. Process., 2021, 65, p 161–173.

    Article  Google Scholar 

  10. D.H. Aghajani and A. Simchi, Processing and Characterizations of Polycarbonate/Alumina Nanocomposites by Additive Powder Fed Friction Stir Processing, Thin-Walled Structures, 2020, 157, p 107086.

    Article  Google Scholar 

  11. D.H. Aghajani and A. Simchi, Effects of Alumina Nanoparticles on the Microstructure, Strength and Wear Resistance of Poly (Methyl Methacrylate)-Based Nanocomposites Prepared by Friction Stir Processing, J. Mech. Behav. Biomed. Mater., 2018, 79, p 246–253.

    Article  CAS  Google Scholar 

  12. S.H. Masood and W.Q. Song, Development of New Metal/Polymer Materials for Rapid Tooling using Fused Deposition modelling, Mater. Des., 2004, 25(7), p 587–594.

    Article  CAS  Google Scholar 

  13. S.S. Sharifabad, H.A. Derazkola, M. Esfandyar, M. Elyasi and F. Khodabakhshi, Mechanical Properties of HA@ Ag/PLA Nanocomposite Structures Prepared by Extrusion-Based Additive Manufacturing, J. Mech. Behav. Biomed. Mater., 2021, 1(118), p 104455.

    Article  CAS  Google Scholar 

  14. R. Kumar, R. Singh, I.P.S. Ahuja and M.S.J. Hashmi, Friction-Stir-Spot Welding of 3D printed ABS and PA6 Composites: Flexural, Thermal and Morphological Investigations, Adv. Mater. Process. Technol., 2020, 35, p 1–8.

    Google Scholar 

  15. J. Singh, R. Singh, R. Kumar, M.M. Rahman and S. Ramakrishna, PLA-PEKK-HAp-CS Composite Scaffold Joining With Friction Stir Spot Welding, J. Thermoplastic Compos. Mater., 2019, 34, p 74–764.

    Google Scholar 

  16. R.K. Nath, P. Maji and J.D. Barma, Joining of Advance Engineering Thermoplastic Using Novel Self-Heated FSW Tool, JOM., 2021, 28, p 1–2.

    Google Scholar 

  17. S. Singh, C. Prakash and M.K. Gupta, On Friction-Stir Welding of 3D Printed Thermoplastics. InMaterials Forming, Machining and Post Processing, Springer, Cham, 2020.

    Google Scholar 

  18. R. Singh, R. Kumar and I.P. Ahuja, Friction Welding for Functional Prototypes of PA6 and ABS with Al Powder Reinforcement, Proc. Natl. Acad. Sci., India, Sect. A, 2020, 7, p 1–9.

    Google Scholar 

  19. R. Kumar, R. Singh, I.P. Ahuja and A. Fortunato, Thermo-MECHANICAL Investigations for the Joining of Thermoplastic Composite Structures via Friction Stir Spot Welding, Compos. Struct., 2020, 253, p 112772.

    Article  Google Scholar 

  20. R. Kumar, R. Singh, I.P. Ahuja and M.S. Hashmi, Friction-Stir-Spot Welding of 3D Printed ABS and PA6 Composites: Flexural, Thermal and Morphological Investigations, Adv. Mater. Process. Technol., 2020, 21, p 1–8.

    CAS  Google Scholar 

  21. F. Lambiase, V. Grossi and A. Paoletti, Effect of Tilt Angle in FSW of Polycarbonate Sheets in Butt Configuration, Int. J. Adv. Manuf. Technol., 2020, 107(1), p 489–501.

    Article  Google Scholar 

  22. A.K. Sharma, M.R. Choudhury and K. Debnath, Experimental Investigation of Friction Stir Welding of PLA, Weld. World., 2020, 19, p 1–1.

    Google Scholar 

  23. H. Koçak, Surface Modification of a Model Part Produced with 3D Printing from PLA Material by Means of Composite Coating, J. Mater. Eng. Perform., 2021, 31, p 1–8.

    Google Scholar 

  24. C. Prakash, G. Singh, S. Singh, W.L. Linda, H.Y. Zheng, S. Ramakrishna and R. Narayan, Mechanical Reliability and In Vitro Bioactivity of 3D-Printed Porous Polylactic Acid-Hydroxyapatite Scaffold, J. Mater. Eng. Perform., 2021, 4, p 1–1.

    Google Scholar 

  25. U.K. Komal, B.K. Kasaudhan and I. Singh, Comparative Performance Analysis of Polylactic Acid Parts Fabricated by 3D Printing and Injection Molding, J. Mater. Eng. Perform., 2021, 20, p 1–7.

    Google Scholar 

  26. P. Kumar, D.K. Rajak, M. Abubakar, S.G. Ali and M. Hussain, 3D Printing Technology for Biomedical Practice: A Review, J. Mater. Eng. Perform., 2021, 26, p 1–4.

    Google Scholar 

  27. R. Kumar, J.S. Chohan, R. Kumar, A. Yadav and N. Singh, Hybrid FUSED Filament Fabrication for Manufacturing of Al Microfilm REINFORCED PLA Structures, J. Braz. Soc. Mech. Sci. Eng., 2020, 42(9), p 1–13.

    Article  CAS  Google Scholar 

  28. Kumar R, Chohan JS, Kumar R, Yadav A, Piyush, Kumar P. Metal spray layered hybrid additive manufacturing of PLA composite structures: Mechanical, thermal and morphological properties. Journal of Thermoplastic Composite Materials. 2020 Jun 24:0892705720932622.

  29. Wurth India Ltd. Perfect aluminium spray. https://eshop.wuerth.in/Perfect-aluminium-spraymatt-ALUSPR-PLUS-400ML/0893114115.sku/en/US/INR/ (accessed 27 April 2020).

  30. M. Hassan, L. Chong and N. Sultana, Wettability and Water Uptake Properties of pla and pcl/gelatin-Based Electrospun Scaffolds, ARPN J. Eng. Appl. Sci., 2006, 11, p 13604–13607.

    Google Scholar 

  31. M.F. Afrose, S.H. Masood, M. Nikzad and P. Iovenitti, Effects of Build Orientations on Tensile Properties of PLA Material Processed by FDM, Adv. Mater. Res., 2014, 1044, p 31–34.

    Article  Google Scholar 

  32. L. Deng, C. Xu, X. Wang and Z. Wang, Supertoughened Polylactide Binary Blend with High Heat Deflection Temperature Achieved by Thermal Annealing Above the Glass Transition Temperature, Acs Sustain. Chem. Eng., 2018, 6(1), p 480–490.

    Article  CAS  Google Scholar 

  33. S. Iannace, L. Sorrentino and E. Di Maio, Biodegradable Biomedical Foam Scaffolds. InBiomedical Foams for Tissue Engineering Applications, Woodhead Publishing, 2014.

    Google Scholar 

  34. X. Tian, T. Liu, C. Yang, Q. Wang and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. A Appl. Sci. Manuf., 2016, 1(88), p 198–205.

    Article  CAS  Google Scholar 

  35. O. Vambol, A. Kondratiev, S. Purhina and M. Shevtsova, Determining the Parameters for a 3D-Printing Process Using the Fused Deposition Modeling in Order To Manufacture an Article With the Required Structural Parameters, Eastern-Eur. J. Enterprise Technol., 2021, 2(1), p 110.

    Google Scholar 

  36. A. Haleem, V. Kumar and L. Kumar, Mathematical Modelling & Pressure Drop Analysis of Fused Deposition Modelling Feed Wire, Int. J. Eng. Technol., 2017, 9(4), p 2885–2894.

    Article  CAS  Google Scholar 

  37. H.A. Derazkola and F. Khodabakhshi, Development of FED Friction-Stir (FFS) Process for Dissimilar Nanocomposite Welding between AA2024 Aluminum Alloy and Polycarbonate (PC), J. Manuf. Process., 2020, 1(54), p 262–273.

    Article  Google Scholar 

  38. H.A. Derazkola and F. Khodabakhshi, A Novel Fed Friction-STIR (FFS) Technology for Nanocomposite Joining, Sci. Technol. Weld. Join., 2020, 25(2), p 89–100.

    Article  CAS  Google Scholar 

  39. H.A. Derazkola and A. Simchi, A New Procedure for the Fabrication of Dissimilar Joints Through Injection of Colloidal nanoparticles During Friction Stir Processing: Proof Concept for AA6062/PMMA Joints, J. Manuf. Process., 2020, 1(49), p 335–343.

    Article  Google Scholar 

  40. H.A. Derazkola and M. Elyasi, The Influence of Process Parameters in Friction Stir Welding of Al-Mg alloy and Polycarbonate, J. Manuf. Process., 2018, 1(35), p 88–98.

    Article  Google Scholar 

  41. H.A. Derazkola, R.K. Fard and F. Khodabakhshi, Effects of Processing Parameters on the Characteristics of Dissimilar Friction-Stir-Welded Joints Between AA5058 Aluminum Alloy and PMMA Polymer, Weld. World., 2018, 62(1), p 117–130.

    Article  CAS  Google Scholar 

  42. H.A. Derazkola and A. Simchi, An Investigation on the Dissimilar Friction Stir Welding of T-Joints Between AA5754 Aluminum Alloy and Poly (Methyl Methacrylate), Thin-Walled Struct., 2019, 1(135), p 376–384.

    Article  Google Scholar 

  43. S.K. Sahu, D. Mishra, R.P. Mahto, V.M. Sharma, S.K. Pal, K. Pal, S. Banerjee and P. Dash, Friction Stir Welding of Polypropylene Sheet, Eng. Sci. Technol. Int J., 2018, 21(2), p 245–254.

    Google Scholar 

  44. Y. Huang, X. Meng, Y. Xie, L. Wan, Z. Lv, J. Cao and J. Feng, Friction Stir Welding/Processing of Polymers and Polymer Matrix Composites, Compos. A Appl. Sci. Manuf., 2018, 1(105), p 235–257.

    Article  CAS  Google Scholar 

  45. J. Singh, R. Singh, R. Kumar, M.M. Rahman and S. Ramakrishna, PLA-PEKK-HAp-CS Composite Scaffold JOINING with Friction Stir spot Welding, J. Thermoplast. Compos. Mater., 2021, 34(6), p 745–764.

    Article  CAS  Google Scholar 

  46. S. Farah, D.G. Anderson and R. Langer, Physical and Mechanical Properties of PLA, and their Functions in Widespread Applications—A COMPREHENSIVE Review, Adv. Drug Deliv. Rev., 2016, 15(107), p 367–392.

    Article  CAS  Google Scholar 

  47. K. Balani, V. Verma, A. Agarwal and R. Narayan, Physical, Thermal, and Mechanical Properties of Polymers, Biosurf A Mater Sci Eng Perspect, 2015, 44, p 329.

    Google Scholar 

Download references

Acknowledgment

The authors are highly thankful to University Centre for Research and Development, Chandigarh University and Centre for Manufacturing Research, Guru Nanak Dev Engineering College, Ludhiana, for technical and testing support in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunpreet Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Ranjan, N., Kumar, V. et al. Characterization of Friction Stir-Welded Polylactic Acid/Aluminum Composite Primed through Fused Filament Fabrication. J. of Materi Eng and Perform 31, 2391–2409 (2022). https://doi.org/10.1007/s11665-021-06329-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06329-4

Keywords

Navigation