Skip to main content
Log in

Tribological Performance Evaluation of Ball Burnished Magnesium Alloy for Bioresorbable Implant Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The application range of magnesium alloys is restricted because of poor tribological performance. The present study focuses on improving the tribological characteristics of magnesium Ze41A alloy by ball burnishing process. The lowest wear rate of 2.997 × (10)−3 mm3/m, CoF of 0.116 and interface temperature of 38 °C are obtained by ball burnishing process. The SEM examination at optimum burnishing condition reveals the oxidative wear mechanism, while the milled surface exhibited plastic deformation mechanism under similar wear conditions. The significant enhancement in tribological performance of magnesium Ze41A alloy is apparently due to the improvement in surface roughness and microhardness during ball burnishing process. The wear rate has been decreased by 51.22%, CoF by 72.58 and interfacial temperature by 39.68% at the optimum burnishing condition as compared to initial milling condition under similar wear conditions. Additionally, the tribological performance is evaluated by fuzzy interface system and the model found to estimate the results with an average absolute error of 4.92%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Sachin, S. Narendranath and D. Chakradhar, Effect of Working Parameters on the Surface Integrity in Cryogenic Diamond Burnishing of 17–4 PH Stainless Steel with a Novel Diamond Burnishing Tool, J. Manuf. Process., 2019, 38, p 564–571.

    Article  Google Scholar 

  2. G. Rotella, S. Rinaldi and L. Filice, Roller Burnishing of Ti6Al4V under Different Cooling/Lubrication Conditions and Tool Design: Effects on Surface Integrity, Int. J. Adv. Manuf. Technol., 2020, 106(1–2), p 431–440.

    Article  Google Scholar 

  3. D.F. Silva-Álvarez et al., Improving the Surface Integrity of the CoCrMo Alloy by the Ball Burnishing Technique, J. Mater. Res. Technol., 2020, 9(4), p 7592–7601.

    Article  Google Scholar 

  4. T.T. Nguyen and L.H. Cao, Optimization of the BURNISHING Process for Energy Responses and Surface Properties, Int. J. Precis. Eng. Manuf., 2020, 21(6), p 1143–1152.

    Article  Google Scholar 

  5. T.T. Nguyen, L.H. Cao, X.P. Dang, T.A. Nguyen and Q.H. Trinh, Multi-objective Optimization of the Flat Burnishing Process for Energy Efficiency and Surface Characteristics, Mater. Manuf. Process., 2019, 34(16), p 1888–1901.

    Article  CAS  Google Scholar 

  6. G.V. Jagadeesh and S. Gangi Setti, A current Status of the Residual Stress Characterization by the Crystal Lattice Strain (Diffraction) Method, J. Struct. Chem., 2020, 61(2), p 262–273.

    Article  Google Scholar 

  7. G. Devaraya, R. Shetty, S. Srinivas and V. Neelakanth, Wear Resistance Enhancement of Titanium Alloy (Ti-6Al-4V ) by Ball Burnishing Process, J. Mater. Res. Technol., 2017, 6(1), p 13–32.

    Article  Google Scholar 

  8. D.S. Rao, H.S. Hebbar, M. Komaraiah and U.N. Kempaiah, Investigations on the Effect of Ball Burnishing Parameters on Surface Hardness and Wear Resistance of HSLA Dual-Phase Steels, Mater. Manuf. Process., 2008, 23(3), p 295–302.

    Article  CAS  Google Scholar 

  9. N.S.M. El-Tayeb, K.O. Low and P.V. Brevern, Influence of Roller Burnishing Contact width and Burnishing Orientation on Surface Quality and Tribological Behaviour of Aluminium 6061, J. Mater. Process. Technol., 2007, 186, p 272–278.

    Article  CAS  Google Scholar 

  10. K.O. Low and K.J. Wong, Influence of Ball Burnishing on Surface Quality and Tribological Characteristics of Polymers under dry Sliding Conditions, Tribol. Int., 2011, 44(2), p 144–153.

    Article  CAS  Google Scholar 

  11. Ł Janczewski et al., Effects of Ball Burnishing on Surface Properties of Low Density Polyethylene, Tribol. Int., 2016, 93, p 36–42.

    Article  CAS  Google Scholar 

  12. H. Hamadache, L. Laouar, N.E. Zeghib and K. Chaoui, Characteristics of Rb40 Steel Superficial Layer under Ball and Roller Burnishing, J. Mater. Process. Technol., 2006, 180(1–3), p 130–136.

    Article  CAS  Google Scholar 

  13. V.P. Kuznetsov, A.V. Makarov, S.G. Psakhie, R.A. Savrai, I.Y. Malygina and N.A. Davydova, Tribological Aspects in Nanostructuring Burnishing of Structural Steels, Phys. Mesomech., 2014, 17(4), p 250–264.

    Article  Google Scholar 

  14. A. Dzierwa and A.P. Markopoulos, Influence of Ball-Burnishing Process on Surface Topography Parameters and Tribological Properties of Hardened Steel, Machines, 2019, 7(11), p 1–13.

    Google Scholar 

  15. N.S.M. El-Tayeb, K.O. Low and P.V. Brevern, Enhancement of Surface Quality and Tribological Properties using Ball Burnishing Process, Mach. Sci. Technol., 2008, 12(2), p 234–248.

    Article  CAS  Google Scholar 

  16. N.S.M. El-Tayeb, K.O. Low and P.V. Brevern, On the Surface and Tribological Characteristics of Burnished Cylindrical Al-6061, Tribol. Int., 2009, 42(2), p 320–326.

    Article  CAS  Google Scholar 

  17. N.S. Manam et al., Study of Corrosion in Biocompatible Metals for Implants: A Review, J. Alloys Compd., 2017, 701, p 698–715.

    Article  CAS  Google Scholar 

  18. G.V. Jagadeesh and S. Gangi Setti, Bio-Engineering and Bio-Design of New Generation Bioresorbable Implants, Indian J. Biochem. Biophys., 2021, 58, p 118–126.

    CAS  Google Scholar 

  19. Y.F. Zheng, X.N. Gu and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R, 2014, 77, p 1–34.

    Article  Google Scholar 

  20. Q. Chen and G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng. R, 2015, 87, p 1–57.

    Article  Google Scholar 

  21. X.N. Gu, X.H. Xie, N. Li, Y.F. Zheng and L. Qin, In Vitro and In Vivo Studies on a MG–Sr Binary Alloy System Developed as a New Kind of Biodegradable Metal, Acta Biomater., 2012, 8, p 2360–2374.

    Article  CAS  Google Scholar 

  22. Y. Yang et al., Mg Bone Implant: Features, Developments and Perspectives, Mater. Des., 2020, 185, p 108259.

    Article  CAS  Google Scholar 

  23. M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants: A Review, Prog. Mater. Sci., 2009, 54, p 397–425.

    Article  CAS  Google Scholar 

  24. S. Agarwal, J. Curtin, B. Duffy and S. Jaiswal, Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications, Mater. Sci. Eng. C, 2016, 68, p 948–963.

    Article  CAS  Google Scholar 

  25. D. Liu, D. Yang, X. Li and S. Hu, Mechanical Properties, Corrosion Resistance and Biocompatibilities of Degradable Mg-RE Alloys, J. Mater. Res. Technol., 2018, 8(1), p 1538–1549.

    Article  Google Scholar 

  26. R.I.M. Asri et al., Corrosion and Surface Modification on Biocompatible Metals: A Review, Mater. Sci. Eng. C, 2017, 77, p 1261–1274.

    Article  CAS  Google Scholar 

  27. B.R. Sunil et al., In Vitro and In Vivo Studies of Biodegradable Fine Grained AZ31 Magnesium Alloy Produced by Equal Channel Angular Pressing, Mater. Sci. Eng. C, 2016, 59, p 356–367.

    Article  Google Scholar 

  28. C. Taltavull, B. Torres, A.J. López and J. Rams, Dry Sliding Wear Behavior of AM50B Magnesium Alloy, Wear, 2013, 301, p 615–625.

    Article  CAS  Google Scholar 

  29. S. Anbu Selvan and S. Ramanathan, Dry Sliding Wear Behavior of as-cast ZE41A Magnesium Alloy, Mater. Des., 2010, 31(4), p 1930–1936.

    Article  CAS  Google Scholar 

  30. A.J. López, P. Rodrigo, B. Torres and J. Rams, Dry Sliding Wear Behaviour of ZE41A Magnesium Alloy, Wear, 2011, 271, p 2836–2844.

    Article  Google Scholar 

  31. S.A. Selvan and S. Ramanathan, Dry Sliding Wear Behavior of Hot Extruded ZE41A Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(7–8), p 1815–1820.

    Article  Google Scholar 

  32. U. Elaiyarasan, V. Satheeshkumar and C. Senthilkumar, A Study on Wear Behaviour of Electrical Discharge-Coated Magnesium Alloy, J. Bio- Tribo-Corrosion, 2019, 5(1), p 1–9.

    Article  Google Scholar 

  33. P. Rodrigo, M. Campo, B. Torres, M.D. Escalera, E. Otero and J. Rams, Microstructure and Wear Resistance of Al-SiC Composites Coatings on ZE41 Magnesium Alloy, Appl. Surf. Sci., 2009, 255(22), p 9174–9181.

    Article  CAS  Google Scholar 

  34. S. García-Rodríguez et al., Wear Resistance of Stainless Steel Coatings on ZE41 Magnesium Alloy, J. Therm. Spray Technol., 2018, 27(8), p 1615–1631.

    Article  Google Scholar 

  35. L. Pezzato et al., Tribocorrosion Properties of PEO Coatings Produced on AZ91 Magnesium Alloy with Silicate- or Phosphate-Based Electrolytes, Coatings, 2018, 8(6), p 1–13.

    Article  Google Scholar 

  36. L. Pezzato, K. Brunelli, S. Diodati, M. Pigato, M. Bonesso and M. Dabalà, Microstructural and Corrosion Properties of Hydroxyapatite Containing peo Coating Produced on az31 mg Alloy, Materials (Basel), 2021, 14(6), p 1–14.

    Article  Google Scholar 

  37. M. Mohedano et al., Bioactive Plasma Electrolytic Oxidation Coatings on Mg-Ca Alloy to Control Degradation Behaviour, Surf. Coatings Technol., 2017, 315, p 454–467.

    Article  CAS  Google Scholar 

  38. R. Egala, G.V. Jagadeesh and S.G. Setti, Experimental Investigation and Prediction of Tribological Behavior of Unidirectional Short Castor Oil Fiber Reinforced Epoxy Composites, Friction, 2021, 9(2), p 250–272.

    Article  CAS  Google Scholar 

  39. J. Leyva-Bravo, P. Chiñas-Sanchez, A. Hernandez-Rodriguez and G.G. Hernandez-Alba, Electrochemical Discharge Machining Modeling Through Different Soft Computing Approaches, Int. J. Adv. Manuf. Technol., 2020, 106(7–8), p 3587–3596.

    Article  Google Scholar 

  40. A.A.D. Sarhan and N.S.M. El-Tayeb, Investigating the Surface Quality of the Burnished Brass C3605 - Fuzzy Rule-Based Approach, Int. J. Adv. Manuf. Technol., 2014, 71(5–8), p 1143–1150.

    Article  Google Scholar 

  41. H. Basak and H.H. Goktas, Burnishing Process on al-Alloy and Optimization of Surface Roughness and Surface Hardness by Fuzzy Logic, Mater. Des., 2009, 30(4), p 1275–1281.

    Article  CAS  Google Scholar 

  42. G.V. Jagadeesh and S.G. Setti, An Experimental Study on the Surface Finish of Ball Burnished Magnesium (Rare Earth Base) Alloy, Mater. Today Proc., 2019, 18, p 4711–4716.

    Article  CAS  Google Scholar 

  43. Z. Yu Zhou et al., Wear Behavior of 7075-Aluminum After Ultrasonic-Assisted Surface Burnishing, J. Manuf. Process., 2020, 51, p 1–9.

    Article  Google Scholar 

  44. B.B. Buldum and S.C. Cagan, Study of Ball Burnishing Process on the Surface Roughness and Microhardness of AZ91D Alloy, Exp. Tech., 2018, 42(2), p 233–241.

    Article  Google Scholar 

  45. J.T. Maximov, G.V. Duncheva, A.P. Anchev, N. Ganev, I.M. Amudjev and V.P. Dunchev, Effect of Slide Burnishing Method on the Surface Integrity of AISI 316Ti Chromium–Nickel Steel, J. Braz. Soc. Mech. Sci. Eng., 2018, 40(4), p 1–14.

    Article  CAS  Google Scholar 

  46. K. Mittal, A. Jain, K.S. Vaisla, O. Castillo and J. Kacprzyk, A comprehensive Review on Type 2 Fuzzy Logic Applications: Past, Present and Future, Eng. Appl. Artif. Intell., 2020, 95, p 103916.

    Article  Google Scholar 

  47. A. Heidarzadeh, Ö.M. Testik, G. Güleryüz and R.V. Barenji, Development of a Fuzzy Logic Based Model to Elucidate the Effect of FSW Parameters on the Ultimate Tensile Strength and Elongation of Pure Copper Joints, J. Manuf. Process., 2020, 53(February), p 250–259.

    Article  Google Scholar 

  48. S.K. Gugulothu, A Novel Assessment Study on a Dynamic Analysis of Hydrodynamic Journal Bearing Performance: A Taguchi-Fuzzy Based Approach Optimization, Transp. Eng., 2020, 2, p 100033.

    Article  Google Scholar 

Download references

Funding

No funds, grants or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasu Gangi Setti.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeesh, G.V., Gangi Setti, S. Tribological Performance Evaluation of Ball Burnished Magnesium Alloy for Bioresorbable Implant Applications. J. of Materi Eng and Perform 31, 1170–1186 (2022). https://doi.org/10.1007/s11665-021-06228-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06228-8

Keywords

Navigation