Skip to main content
Log in

On the Characteristic Features of Dislocations during Ratcheting–Creep Interaction

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present investigation systematically represents for the first time the density and role of characteristic dislocations in controlling ratcheting and ratcheting–creep behavior of A356 Al alloy. The dislocation characteristics were evaluated using the modified Williamson–Hall method from x-ray diffraction profile analysis. The obtained results indicated that the strain accumulation during ratcheting increased with an increase in both mean stress (σm) and stress amplitude (σa). The dislocation density of all the deformed specimens increased by at least three orders of magnitude compared to the specimen in as-received condition. Further, ratcheting was primarily controlled by significant variation of screw dislocations, and its quantitative fraction was inversely varied with applied σm and σa. Ratcheted+crept specimens, on the other hand, showed the dominance of edge dislocations. The creep deformation followed by ratcheting was associated with work softening, with an inverse relationship between the quantity of edge dislocations and strain accumulation. This variation in quantity and nature of dislocations was due to the effects of the annihilation of dislocations and the type of loading in the respective phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.D. Dighe, A.M. Gokhale and M.F. Horstemeyer, Effect of Loading Condition and Stress State on Damage Evolution of Silicon Particles in an Al-Si-Mg-Base Cast Alloy, Metall. Mater. Trans. A, 2002, 33(3), p 555–565.

    Article  Google Scholar 

  2. M.D. Dighe, A.M. Gokhale, M.F. Horstemeyer and D.A. Mosher, Effect of Strain Rate on Damage Evolution in a Cast Al-Si-Mg Base Alloy, Metall. Mater. Trans. A, 2000, 31(7), p 1725–1731.

    Article  Google Scholar 

  3. ASM Metals Handbook, Vol 02 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Volume 2, ASM International, 1990, p 3330–3345.

  4. G. Atxaga, A. Pelayo and A.M. Irisarri, Effect of Microstructure on Fatigue Behaviour of Cast Al-7Si-Mg Alloy, Mater. Sci. Technol., 2001, 17(4), p 446–450.

    Article  CAS  Google Scholar 

  5. M.A. Bayoumi, M.I. Negm and A.M. El-Gohry, Microstructure and Mechanical Properties of Extruded Al-Si Alloy (A356) in the Semi-Solid State, Mater. Des., 2009, 30(10), p 4469–4477.

    Article  CAS  Google Scholar 

  6. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng. A, 2000, 280(1), p 37–49.

    Article  Google Scholar 

  7. X.S. Jiang, G.Q. He, B. Liu, S.J. Fan and M.H. Zhu, Microstructure-Based Analysis of Fatigue Behaviour of Al-Si-Mg Alloy, Trans. Nonferrous Met. Soc. China, 2011, 21(3), p 443–448.

    Article  CAS  Google Scholar 

  8. K. Dutta and K.K. Ray, Ratcheting Phenomenon and Post-Ratcheting Tensile Behaviour of an Aluminum Alloy, Mater. Sci. Eng. A, 2012, 540, p 30–37.

    Article  CAS  Google Scholar 

  9. M. Meraj, K. Dutta, R. Bhardwaj, N. Yedla, V. Karthik and S. Pal, Influence of Asymmetric Cyclic Loading on Structural Evolution and Deformation Behavior of Cu-5 at.% Zr Alloy: An Atomistic Simulation-Based Study, J. Mater. Eng. Perform., 2017, 26(11), p 5197–5205.

    Article  CAS  Google Scholar 

  10. R. Kreethi, P. Verma and K. Dutta, Influence of Heat Treatment on Ratcheting Fatigue Behavior and Post Ratcheting Tensile Properties of Commercial Aluminum, Trans. Indian Inst. Met., 2015, 68(2), p 229–237.

    Article  CAS  Google Scholar 

  11. R. Kreethi, C. Sivateja, A.K. Mondal and K. Dutta, Ratcheting Life Prediction of Quenched-Tempered 42CrMo4 Steel, J. Mater. Sci., 2019, 54(17), p 11703–11712.

    Article  CAS  Google Scholar 

  12. Y. Wang, S. Yang, C. Xie, H. Liu and Q. Zhang, Microstructure and Ratcheting Behavior of Additive Manufactured 4043 Aluminum Alloy, J. Mater. Eng. Perform., 2018, 27(9), p 4582–4592.

    Article  CAS  Google Scholar 

  13. R. Feng, W. Wang, Z. Yan, D. Wang, S. Wan and N. Shi, Fatigue Limit Assessment of a 6061 Aluminum Alloy Based on Infrared Thermography and Steady Ratcheting Effect, Int. J. Miner. Metall. Mater., 2020, 27(9), p 1301–1308.

    Article  CAS  Google Scholar 

  14. S. Sreenivasan, S.K. Mishra and K. Dutta, Ratcheting Strain and Its Effect on Low Cycle Fatigue Behavior of Al 7075–T6 Alloy, Mater. Sci. Eng. A, 2017, 698(April), p 46–53.

    Article  CAS  Google Scholar 

  15. R. Kreethi, S.K. Mishra, A.K. Mondal and K. Dutta, On the Comparative Assessment of Ratcheting-Induced Dislocation Density in 42CrMo4 Steel by X-Ray Diffraction Profile Analysis and Hardness Measurement, Philos. Mag., 2018, 98(29), p 2637–2656.

    Article  CAS  Google Scholar 

  16. R.J. Rider, S.J. Harvey and H.D. Chandler, Fatigue and Ratcheting Interactions, Int. J. Fatigue, 1995, 17(7), p 507–511.

    Article  CAS  Google Scholar 

  17. B. Amir Esgandari, B. Nami, M. Shahmiri and A. Abedi, Effect of Mg and Semi Solid Processing on Microstructure and Impression Creep Properties of A356 Alloy, Trans. Nonferrous Met. Soc. China, 2013, 23(9), p 2518–2523.

    Article  CAS  Google Scholar 

  18. S.M. Miresmaeili and B. Nami, Impression Creep Behavior of Al-1.9%Ni-1.6%Mn-1%Mg Alloy, Mater. Des., 2014, 56, p 286–290.

    Article  CAS  Google Scholar 

  19. M. Barmouz, K. Abrinia and J. Khosravi, Using Hardness Measurement for Dislocation Densities Determination in FSPed Metal in Order to Evaluation of Strain Rate Effect on the Tensile Behavior, Mater. Sci. Eng. A, 2013, 559, p 917–919.

    Article  CAS  Google Scholar 

  20. T. Ungár, J. Gubicza, P. Hanák and I. Alexandrov, Densities and Character of Dislocations and Size-Distribution of Subgrains in Deformed Metals by X-Ray Diffraction Profile Analysis, Mater. Sci. Eng. A, 2001, 319–321, p 274–278.

    Article  Google Scholar 

  21. P.P. Seth, A. Das, H.N. Bar, S. Sivaprasad, A. Basu and K. Dutta, Evolution of Dislocation Density During Tensile Deformation of BH220 Steel at Different Pre-Strain Conditions, J. Mater. Eng. Perform., 2015, 24(7), p 2779–2783.

    Article  CAS  Google Scholar 

  22. G.F. Van der Voort, Metallography: Principles and Practice, Vol 1, McGraw-Hill Book Co., New York, 1984, p 712

    Google Scholar 

  23. A.C. Leff, C.R. Weinberger and M.L. Taheri, Estimation of Dislocation Density from Precession Electron Diffraction Data Using the Nye Tensor, Ultramicroscopy, 2015, 153, p 9–21.

    Article  CAS  Google Scholar 

  24. R.W. Cahn and P. Haasen, Physical Metallurgy, Vol 2, North-Holland Publishing Company, Amsterdam, 1996, p 1062–1133

    Google Scholar 

  25. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials,E466-15, Annual Book of ASTM Standards, ASTM, 2015, p2.

  26. S.K. Mishra, H. Roy, A.K. Mondal and K. Dutta, Damage Assessment of A356 Al Alloy Under Ratcheting–Creep Interaction, Metall. Mater. Trans. A, 2017, 48(6), p 2877–2885.

    Article  CAS  Google Scholar 

  27. C. Gaudin and X. Feaugas, Cyclic Creep Process in AISI 316L Stainless Steel in Terms of Dislocation Patterns and Internal Stresses, Acta Mater., 2004, 52(10), p 3097–3110.

    Article  CAS  Google Scholar 

  28. G. Kang, Y. Dong, Y. Liu, H. Wang and X. Cheng, Uniaxial Ratchetting of 20 Carbon Steel: Macroscopic and Microscopic Experimental Observations, Mater. Sci. Eng. A, 2011, 528(16–17), p 5610–5620.

    Article  CAS  Google Scholar 

  29. R. Kreethi, A.K. Mondal and K. Dutta, Ratcheting Fatigue Behaviour of 42CrMo4 Steel under Different Heat Treatment Conditions, Mater. Sci. Eng. A, 2016, 679, p 66–74.

    Article  CAS  Google Scholar 

  30. G. Kang, Y. Dong, H. Wang, Y. Liu and X. Cheng, Dislocation Evolution in 316L Stainless Steel Subjected to Uniaxial Ratchetting Deformation, Mater. Sci. Eng. A, 2010, 527, p 5952–5961.

    Article  CAS  Google Scholar 

  31. Y. Dong, G. Kang, Y. Liu, H. Wang and X. Cheng, Dislocation Evolution in 316 L Stainless Steel During Multiaxial Ratchetting Deformation, Mater. Charact., 2010, 65, p 62–72.

    Article  CAS  Google Scholar 

  32. H. Chen and A.T. Alpas, Wear of Aluminium Matrix Composites Reinforced with Nickel-Coated Carbon Fibres, Wear, 1996, 192(1–2), p 186–198.

    Article  CAS  Google Scholar 

  33. W. Woo, T. Ungár, Z. Feng, E. Kenik and B. Clausen, X-Ray and Neutron Diffraction Measurements of Dislocation Density and Subgrain Size in a Friction-Stir-Welded Aluminum Alloy, Metall. Mater. Trans. A, 2010, 41(5), p 1210–1216.

    Article  CAS  Google Scholar 

  34. H. Roy, A. Ray, K. Barat, C. Hochmuth, S. Sivaprasad, S. Tarafder, U. Glatzel and K.K. Ray, Structural Variations Ahead of Crack Tip during Monotonic and Cyclic Fracture Tests of AISI 304LN Stainless Steel, Mater. Sci. Eng. A, 2013, 561, p 88–99.

    Article  CAS  Google Scholar 

  35. G. Ribárik and T. Ungár, Characterization of the Microstructure in Random and Textured Polycrystals and Single Crystals by Diffraction Line Profile Analysis, Mater. Sci. Eng. A, 2010, 528(1), p 112–121.

    Article  CAS  Google Scholar 

  36. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, 1987, p 58

    Google Scholar 

  37. T. Ungár, S. Ott, P.G. Sanders, A. Borbély and J.R. Weertman, Dislocations, Grain Size and Planar Faults in Nanostructured Copper Determined by High Resolution X-Ray Diffraction and a New Procedure of Peak Profile Analysis, Acta Mater., 1998, 46(10), p 3693–3699.

    Article  Google Scholar 

  38. T. Ungar, Dislocation Densities, Arrangements and Character from X-Ray Diffraction Experiments, Mater. Sci. Eng. A, 2001, 310, p 14–22.

    Article  Google Scholar 

  39. K. Dutta, R. Kishor, L. Sahu and A.K. Mondal, On the Role of Dislocation Characters Influencing Ratcheting Deformation of Austenitic Stainless Steel, Mater. Sci. Eng. A, 2016, 660, p 47–51.

    Article  CAS  Google Scholar 

  40. T. Ungár, I. Dragomir, Á. Révész and A. Borbély, The Contrast Factors of Dislocations in Cubic Crystals: The Dislocation Model of Strain Anisotropy in Practice, J. Appl. Crystallogr., 1999, 32(5), p 992–1002.

    Article  Google Scholar 

  41. F. Lorenzo and C. Laird, Cyclic Creep Acceleration and Retardation in Polycrystalline Copper Tested at Ambient Temperature, Acta Metall., 1984, 32(5), p 681–692.

    Article  CAS  Google Scholar 

  42. F. Lorenzo and C. Laird, Strain Bursts in the Cyclic Creep of Copper Single Crystals at Ambient Temperature, Acta Metall., 1984, 32(5), p 671–680.

    Article  CAS  Google Scholar 

  43. H.D. Chandler and J.V. Bee, Cell Structures in Polycrystalline Copper Undergoing Cyclic Creep At Room Temperature, Acta Metall., 1985, 33(6), p 1121–1127.

    Article  CAS  Google Scholar 

  44. X. Feaugas and C. Gaudin, Ratchetting Process in the Stainless Steel AISI 316L at 300 K: An Experimental Investigation, Int. J. Plast., 2004, 20(4–5), p 643–662.

    Article  CAS  Google Scholar 

  45. K. Dutta, S. Sivaprasad, S. Tarafder and K.K. Ray, Influence of Asymmetric Cyclic Loading on Substructure Formation and Ratcheting Fatigue Behaviour of AISI 304LN Stainless Steel, Mater. Sci. Eng. A, 2010, 527(29–30), p 7571–7579.

    Article  CAS  Google Scholar 

  46. T. Matsunaga and E. Sato, Creep Mechanism in Several Grades of Aluminum at Low Temperatures, Keikinzoku/J. Jpn. Inst. Light Met., 2014, 64(2), p 42–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, K., Mishra, S.K., Dwivedi, P.K. et al. On the Characteristic Features of Dislocations during Ratcheting–Creep Interaction. J. of Materi Eng and Perform 30, 7376–7385 (2021). https://doi.org/10.1007/s11665-021-05934-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05934-7

Keywords

Navigation