Skip to main content
Log in

Parametric Analysis for Erosion Wear of Waste Marble Dust-Filled Polyester Using Response Surface Method and Neural Networks

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research, the erosion wear characterization of waste marble dust (an industrial/construction waste)-filled polyester composites is evaluated. The relative effect of the control factors on the erosion rate of the composites is experimentally and statistically evaluated using a statistical model based on the response surface method, and the mechanisms of erosion loss are studied from the worn surface morphologies taken using a scanning electron microscope. The analysis reveals that striking velocity, filler concentration, and impingement angle in that sequence are the significant control factors affecting the erosion rate of the composites. The erosion efficiency of the composites is calculated to ascertain the erosion behavior of the composites. Further, an analytical as well as predictive model working on neural networks, is used to predict the erosion rate of the composites at different levels of the individual control factors. Such composites are expected to be advantageous in wear-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Magnée, Generalized Law of Erosion: Application to Various Alloys and Intermetallics, Wear, 1995, 181–183(2), p 500–510

    Article  Google Scholar 

  2. J. Cayer-Barrioz, D. Mazuyer, P. Kapsa, A. Chateauminois, and G. Robert, Abrasive Wear Micromechanisms of Oriented Polymers, Polymer (Guildf), 2004, 45(8), p 2729–2736

    Article  CAS  Google Scholar 

  3. L. Jiang, C. He, J. Fu, and D. Chen, Wear Behavior of Straw Fiber-Reinforced Polyvinyl Chloride Composites under Simulated Acid Rain Conditions, Polym. Test., 2017, 62, p 373–381. https://doi.org/10.1016/j.polymertesting.2017.07.028

    Article  CAS  Google Scholar 

  4. O. Reynolds, XLII. On the Action of a Blast of Sand in Cutting Hard Material, Lond. Edinb., Dublin Philos. Mag. J. Sci., 1873, 46(307), p 337–343

    Article  Google Scholar 

  5. S. Arjula and A.P. Harsha, Study of Erosion Efficiency of Polymers and Polymer Composites, Polym. Test., 2006, 25(2), p 188–196

    Article  CAS  Google Scholar 

  6. M.A. Islam and Z.N. Farhat, Effect of Impact Angle and Velocity on Erosion of API, X42 Pipeline Steel under High Abrasive Feed Rate, Wear, 2014, 311(1–2), p 180–190. https://doi.org/10.1016/j.wear.2014.01.005

    Article  CAS  Google Scholar 

  7. Y.I. Oka, H. Ohnogi, T. Hosokawa, and M. Matsumura, The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact, Wear, 1997, 203–204, p 573–579

    Article  Google Scholar 

  8. R. Rattan and J. Bijwe, Influence of Impingement Angle on Solid Particle Erosion of Carbon Fabric Reinforced Polyetherimide Composite, Wear, 2007, 262(5–6), p 568–574

    Article  CAS  Google Scholar 

  9. S. Biswas and A. Satapathy, A Comparative Study on Erosion Characteristics of Red Mud Filled Bamboo-Epoxy and Glass-Epoxy Composites, Mater. Des., 2010, 31(4), p 1752–1767. https://doi.org/10.1016/j.matdes.2009.11.021

    Article  CAS  Google Scholar 

  10. P.J. Mathias, W. Wu, K.C. Goretta, J.L. Routbort, D.P. Groppi, and K.R. Karasek, Solid Particle Erosion of a Graphite-Fiber-Reinforced Bismaleimide Polymer Composite, Wear, 1989, 135(1), p 161–169

    Article  CAS  Google Scholar 

  11. A. Rout, A. Satapathy, S. Mantry, A. Sahoo, and T. Mohanty, Erosion Wear Performance Analysis of Polyester-GF-Granite Hybrid Composites Using the Taguchi Method, Procedia Eng., 2012, 38, p 1863–1882

    Article  CAS  Google Scholar 

  12. J. Zahavi and G.F. Schmitt, Solid Particle Erosion of Reinforced Composite Materials, Wear, 1981, 71, p 179–190

    Article  Google Scholar 

  13. E. Sarlin, M. Saarimäki, R. Sironen, M. Lindgren, S. Siljander, M. Kanerva, and J. Vuorinen, Erosive Wear of Filled Vinylester Composites in Water and Acidic Media at Elevated Temperature, Wear, 2017, 390–391, p 84–92. https://doi.org/10.1016/j.wear.2017.07.011

    Article  CAS  Google Scholar 

  14. M. Fang, F. Liu, X. Min, Z. Huang, Y. Liu, X. Wu, C. Tang, L. Zhang, and F. Peng, Effect of Temperature on Solid Particle Impact Erosion Wear Mechanism of 5 Mol% Yttria Stabilized Zirconia Ceramics, Ceram. Int., 2015, 41(5), p 6807–6811. https://doi.org/10.1016/j.ceramint.2015.01.128

    Article  CAS  Google Scholar 

  15. A. Kishore and G.B. Sridhar, On Evaluating Erosion by Sand Particles in Polythene System without and with Ceramic Particles, Polym. Test., 2002, 21(4), p 473–477

    Article  CAS  Google Scholar 

  16. A. Patnaik, A. Satapathy, S.S. Mahapatra, and R.R. Dash, Tribo-Performance of Polyester Hybrid Composites: Damage Assessment and Parameter Optimization Using Taguchi Design, Mater. Des., 2009, 30(1), p 57–67

    Article  CAS  Google Scholar 

  17. H. Arabnejad, S.A. Shirazi, B.S. McLaury, H.J. Subramani, and L.D. Rhyne, The Effect of Erodent Particle Hardness on the Erosion of Stainless Steel, Wear, 2015, 332–333, p 1098–1103. https://doi.org/10.1016/j.wear.2015.01.017

    Article  CAS  Google Scholar 

  18. B. Ghiban, C.A. Safta, M. Ion, C.E. Crângaşu, and M.C. Grecu, Structural Aspects of Silt Erosion Resistant Materials Used in Hydraulic Machines Manufacturing, Energy Procedia, 2017, 112, p 75–82. https://doi.org/10.1016/j.egypro.2017.03.1064

    Article  Google Scholar 

  19. K. Friedrich, Polymer Composites for Tribological Applications, Adv. Ind. Eng. Polym. Res., 2018, 1(1), p 3–39. https://doi.org/10.1016/j.aiepr.2018.05.001

    Article  Google Scholar 

  20. P.J. Slikkerveer and F.J. Touwslager, Erosion of Elastomeric Protective Coatings, Wear, 1999, 236(1–2), p 189–198

    Article  CAS  Google Scholar 

  21. R. Kaundal, Role of Process Variables on the Solid Particle Erosion of Polymer Composites: A Critical Review, Silicon, 2014, 6(1), p 5–20

    Article  CAS  Google Scholar 

  22. A. Purohit and A. Satapathy, Development and Characterization of Epoxy-Based Composites Filled with Linz–Donawitz Sludge, J. Compos. Mater., 2017, 51(7), p 899–911

    Article  CAS  Google Scholar 

  23. S. Ray, A.K. Rout, A.K. Sahoo, and I. After, Glass-Epoxy Composites Filled with Marble, UPB Sci. Bull. Ser. B, 2018, 80(4), p 181–196

    CAS  Google Scholar 

  24. C.B. Ng, B.J. Ash, L.S. Schadler, and R.W. Siegel, A Study of the Mechanical and Permeability Properties of Nano-TiO2 Filled Epoxy Composites, Adv. Compos. Lett., 2001, 10(3), p 101–111

    Article  Google Scholar 

  25. R.K. Nayak, Influence of Seawater Aging on Mechanical Properties of Nano-Al2O3 Embedded Glass Fiber Reinforced Polymer Nanocomposites, Constr. Build. Mater., 2019, 221, p 12–19. https://doi.org/10.1016/j.conbuildmat.2019.06.043

    Article  CAS  Google Scholar 

  26. K. Friedrich, Z. Zhang, and A.K. Schlarb, Effects of Various Fillers on the Sliding Wear of Polymer Composites, Compos. Sci. Technol., 2005, 65(15-16 SPEC. ISS.), p 2329–2343

    Article  CAS  Google Scholar 

  27. Krishna, B. Suresha, S.S. Kallesh, and R. Hemanth, Effect of Fillers on Erosive Wear Behavior of Polyoxymethylene/Polytetrafluoroethylene Blend and Their Composites: A Statistical Approach, Indian J. Adv. Chem. Sci., 2016, 1, p 45–51

    Google Scholar 

  28. K. Tanaka, Effects of Various Fillers on the Friction and Wear of PTFE-Based Composites, Frict. Wear Polym. Compos., 1986, https://doi.org/10.1016/b978-0-444-42524-9.50009-0

    Article  Google Scholar 

  29. J. Abenojar, M.A. Martínez, F. Velasco, V. Pascual-Sánchez, and J.M. Martín-Martínez, Effect of Boron Carbide Filler on the Curing and Mechanical Properties of an Epoxy Resin, J. Adhes., 2009, 85(4–5), p 216–238

    Article  CAS  Google Scholar 

  30. J. Abenojar, J.C. del Real, M.A. Martinez, and M.C. de Santayana, Effect of Silane Treatment on SiC Particles Used as Reinforcement in Epoxy Resins, J. Adhes., 2009, 85(6), p 287–301

    Article  CAS  Google Scholar 

  31. J. Abenojar, J. Tutor, Y. Ballesteros, J.C. Real, and M.A. Martínez, Erosion-Wear, Mechanical and Thermal Properties of Silica Filled Epoxy Nanocomposites, Compos. Part B, 2017, 120, p 42–53. https://doi.org/10.1016/j.compositesb.2017.03.047

    Article  CAS  Google Scholar 

  32. A.H. Awad and M.H. Abdellatif, Assessment of Mechanical and Physical Properties of LDPE Reinforced with Marble Dust, Compos. Part B Eng., 2019, 173(March), p 106948. https://doi.org/10.1016/j.compositesb.2019.106948

    Article  CAS  Google Scholar 

  33. P.K. Padhi and A. Satapathy, Analysis of Sliding Wear Characteristics of BFS Filled Composites Using an Experimental Design Approach Integrated with ANN, Tribol. Trans., 2013, 56(5), p 789–796

    Article  CAS  Google Scholar 

  34. A.H. Awad, A. Aly Abd El-Wahab, R. El-Gamsy, and M.H. Abdel-latif, A Study of Some Thermal and Mechanical Properties of HDPE Blend with Marble and Granite Dust, Ain Shams Eng. J., 2019, 10(2), p 353–358. https://doi.org/10.1016/j.asej.2018.08.005

    Article  Google Scholar 

  35. S.K. Nayak, A. Satapathy, and S. Mantry, Processing and Wear Response Study of Glass-Polyester Composites with Waste Marble Dust as Particulate Filler, Polym. Compos., 2019, 2020, p 1–11

    Google Scholar 

  36. S.K. Nayak, A. Satapathy, and S. Mantry, Wear Characteristics of Glass-Polyester-Based Hybrid Composites: A Parametric Analysis Using Response Surface Method and Fuzzy Logic, Polym. Compos., 2020, 41(9), p 3687–3697

    Article  CAS  Google Scholar 

  37. S.K. Nayak and A. Satapathy, Wear Analysis of Waste Marble Dust-Filled Polymer Composites with an Integrated Approach Based on Design of Experiments and Neural Computation. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2019, 234, p 1–11

  38. S.K. Nayak and A. Satapathy, Development and Characterization of Polymer-Based Composites Filled with Micro-Sized Waste Marble Dust. Polym. Polym. Compos., 2020, p 1–12

  39. A. Purohit and A. Satapathy, Epoxy matrix composites filled with micro-sized LD sludge: wear characterization and analysis, in IOP Conference Series: Materials Science and Engineering (2016), p. 012006 (1–8)

  40. R. Sundarakannan, V. Arumugaprabu, V. Manikandan, and R. Deepak Joel Johnson, Tribo performance studies on redmud filled pineapple fiber composite, in IConAMMA 2018 Tribo, Materials Today: Proceedings (Elsevier Ltd., 2018), pp. 1225–1234. https://doi.org/10.1016/j.matpr.2020.04.437

  41. S. Biswas, A. Satapathy, and A. Patnaik, A comparative study on wear behavior of copper slag filled bamboo-epoxy and glass-epoxy composites, in International Conference on “Advancements in Polymeric Materials” (APM-2010) (Bhubaneswar, India, 20–22 February 2010, 2010), pp. 1–5.

  42. P. Kumar Padhi and A. Satapathy, Solid Particle Erosion Behavior of BFS-Filled Epoxy-SGF Composites Using Taguchi’s Experimental Design and ANN, Tribol. Trans., 2014, 57(3), p 396–407

    Article  CAS  Google Scholar 

  43. A. Purohit and A. Satapathy, A study on erosion wear performance of Linz–Donawitz sludge filled polypropylene matrix composites, in International Conference on Mechanical Materials and Renewable Energy, IOP Conference Series: Materials Science and Engineering, vol. 377, no. 1 (2018), p. 012045 (1–5)

  44. A. Patnaik, A. Satapathy, S.S. Mahapatra, and R.R. Dash, Modeling and Prediction of Erosion Response of Glass Reinforced Polyester-Flyash Composites, J. Reinf. Plast. Compos., 2009, 28(5), p 513–536

    Article  CAS  Google Scholar 

  45. A. Rout, A. Satapathy, S. Mantry, A. Sahoo, and T. Mohanty, Erosion wear performance analysis of polyester-GF-granite hybrid composites using the Taguchi method, in Procedia Engineering, International Conference on Modelling Optimization and Computing-2012 (Tamilnadu, India, 10–11 April 2012) (Elsevier Ltd., 2012), pp. 1863–1882

  46. J.J. Mathavan and A. Patnaik, Analysis of Wear Properties of Granite Dust Filled Polymer Composite for Wind Turbine Blade, Results Mater., 2020, 5, p 100073. https://doi.org/10.1016/j.rinma.2020.100073

    Article  Google Scholar 

  47. N. Soni and P.M. Bhargava, Experimental Investigation and Numerical Simulation of Marble Dust Filled Aramid Fibre Reinforced Epoxy Composite for Wind Turbine Blade Application, Int. J. Sci. Res. Eng. Technol., 2017, 6(1), p 23–31

    Google Scholar 

  48. N. Senthilkumar, T. Tamizharasan, and S. Gobikannan, Application of Response Surface Methodology and Firefly Algorithm for Optimizing Multiple Responses in Turning AISI, 1045 Steel, Arab. J. Sci. Eng., 2014, 39(11), p 8015–8030

    Article  Google Scholar 

  49. R. Calfee and D. Piontkowski, Design and analysis of experiments, in Handbook of Reading Research, ed. by Heath Rushing, Andrew Karl, James Wisnowski, 2013 edn (SAS Institute, Cary, North Carolina, 2016)

  50. C.P. Koshy, P.K. Rajendrakumar, and M.V. Thottackkad, Evaluation of the Tribological and Thermo-Physical Properties of Coconut Oil Added with MoS2 Nanoparticles at Elevated Temperatures, Wear, 2015, 330–331(January), p 288–308. https://doi.org/10.1016/j.wear.2014.12.044

    Article  CAS  Google Scholar 

  51. A. Kumar, V. Kumar, and J. Kumar, Multi-Response Optimization of Process Parameters Based on Response Surface Methodology for Pure Titanium Using WEDM Process, Int. J. Adv. Manuf. Technol., 2013, 68(9–12), p 2645–2668

    Article  Google Scholar 

  52. M. Hanief and M.F. Wani, Modeling and Prediction of Surface Roughness for Running-in Wear Using Gauss-Newton Algorithm and ANN, Appl. Surf. Sci., 2015, 357, p 1573–1577. https://doi.org/10.1016/j.apsusc.2015.10.052

    Article  CAS  Google Scholar 

  53. J. Adamowski and C. Karapataki, Comparison of Multivariate Regression and Artificial Neural Networks for Peak Urban Water-Demand Forecasting : Evaluation of Different ANN Learning Algorithms, J. Hydrol. Eng., 2010, 15, p 729–743

    Article  Google Scholar 

  54. G. Sundararajan, M. Roy, and B. Venkataraman, Erosion Efficiency—A New Parameter to Characterize the Dominant Erosion Micromechanism, Wear, 1990, 140(2), p 369–381

    Article  CAS  Google Scholar 

  55. A.P. Harsha, U.S. Tewari, and B. Venkatraman, Solid Particle Erosion Behaviour of Various Polyaryletherketone Composites, Wear, 2003, 254(7–8), p 693–712

    Article  CAS  Google Scholar 

  56. H. Jena, A.K. Pradhan, and M.K. Pandit, Study of Solid Particle Erosion Wear Behavior of Bamboo Fiber Reinforced Polymer Composite with Cenosphere Filler, Adv. Polym. Technol., 2018, 37(3), p 761–769

    Article  CAS  Google Scholar 

  57. G.P. Tilly, Erosion Caused by Airborne Particles, Wear, 1969, 14(1), p 63–79

    Article  Google Scholar 

  58. T. Sinmazcelik and I. Taskiran, Erosive Wear Behaviour of Polyphenylenesulphide (PPS) Composites, Mater. Des., 2007, 28, p 2471–2477

    Article  CAS  Google Scholar 

  59. A.P. Harsha and A.A. Thakre, Investigation on Solid Particle Erosion Behaviour of Polyetherimide and Its Composites, Wear, 2007, 262(7–8), p 807–818

    Article  CAS  Google Scholar 

  60. A.P. Harsha and S.K. Jha, Erosive Wear Studies of Epoxy-Based Composites at Normal Incidence, Wear, 2008, 265, p 1129–1135

    Article  CAS  Google Scholar 

  61. N.M. Barkoula, J. Gremmels, and J. Karger-Kocsis, Dependence of Solid Particle Erosion on the Cross-Link Density in an Epoxy Resin Modified by Hygrothermally Decomposed Polyurethane, Wear, 2001, 247(1), p 100–108

    Article  CAS  Google Scholar 

  62. M. Yogesh and A.N. Hari-Rao, Erosion Wear Response of Pineapple Leaf Fiber (PALF) Reinforced Vinylester Composites Filled With Redmud: An Alumina Plant Waste, Int. J. Eng. Dev. Res., 2018, 6(1), p 734–746

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Kumar Nayak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Surface Engineering. The issue was organized by Dr. M.K. Banerjee, Malaviya National Institute of Technology, Jaipur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, S.K., Satapathy, A. & Mantry, S. Parametric Analysis for Erosion Wear of Waste Marble Dust-Filled Polyester Using Response Surface Method and Neural Networks. J. of Materi Eng and Perform 30, 3942–3954 (2021). https://doi.org/10.1007/s11665-021-05595-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05595-6

Keywords

Navigation