Skip to main content

Advertisement

Log in

316L Stainless Steel Microstructural, Mechanical, and Corrosion Behavior: A Comparison Between Spark Plasma Sintering, Laser Metal Deposition, and Cold Spray

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Herein, Austenitic 316 low carbon stainless steel, a widely used grade for various applications, was studied to understand the effect of processing methods on the material properties. Steel samples were processed using spark plasma sintering (SPS), laser metal deposition (LMD), and cold spray (CS) techniques. Significant difference in hardness and yield strength was observed among the processed samples. The CS sample showed highest hardness (~ 378 Hv) and yield strength (~ 1390 MPa) compared to other samples. In addition to the desirable mechanical properties, corrosion resistance has a significant role in determining the service life of steel in corrosive environments. All the processed samples showed lower corrosion rate than the commercial steel. Results obtained from various characterization tools will be presented in-detail.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. M. Saravanan et al., A Review on Recent Progress in Coatings on AISI Austenitic Stainless Steel, Materials Today: Proceedings., 2018, 5(6, Part 2), p 14392–14396.

    CAS  Google Scholar 

  2. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928.

    Article  CAS  Google Scholar 

  3. I. Chang and Y. Zhao, Advances in Powder Metallurgy: Properties, Processing and Applications, Vol 60 Woodhead Publishing, Oxford, 2013.

    Book  Google Scholar 

  4. M.S. El-Eskandarany, Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, 2nd ed. Elsevier, Amsterdam, 2015.

    Google Scholar 

  5. Z.-Y. Hu et al., A Review of Multi-Physical Fields Induced Phenomena and Effects in Spark Plasma Sintering: Fundamentals and Applications, Mater. Des., 2020, 191, p 108662.

    Article  CAS  Google Scholar 

  6. E.G. Grigoriev and A.V. Rosliakov, Electro-Discharge Compaction of WC-Co and W-Ni-Fe-Co Composite Materials, J. Mater. Process. Technol., 2007, 191(1), p 182–184.

    Article  CAS  Google Scholar 

  7. F. Balima et al., High Pressure Pulsed Electric Current Activated Equipment (HP-SPS) for Material Processing, Mater. Des., 2018, 139, p 541–548.

    Article  Google Scholar 

  8. A. Sova et al., Cold Spray Deposition of 316L Stainless Steel Coatings on Aluminium Surface with Following Laser Post-Treatment, Surf. Coat. Technol., 2013, 235, p 283–289.

    Article  CAS  Google Scholar 

  9. W. Shen et al., Diffusion Welding of Powder Metallurgy High Speed Steel by Spark Plasma Sintering, J. Mater. Process. Technol., 2020, 275, p 116383.

    Article  CAS  Google Scholar 

  10. J. Gu et al., Microstructure, Mechanical Properties, and Residual Stress Distribution of AISI 316L Stainless Steel Part Fabricated by Laser Metal Deposition, Scanning, 2020, 2020, p 1–10.

    Google Scholar 

  11. K. Spencer and M.X. Zhang, Optimisation of Stainless Steel Cold Spray Coatings Using Mixed Particle Size Distributions, Surf. Coat. Technol., 2011, 205(21–22), p 5135–5140.

    Article  CAS  Google Scholar 

  12. M. Madej, B. Leszczyńska-Madej and D. Garbiec, High Speed Steel with Iron Addition Materials Sintered by Spark Plasma Sintering, Metals (Basel), 2020, 10(11), p 1549.

    Article  CAS  Google Scholar 

  13. Z. Liu et al., The Microstructure and Mechanical Behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-03Si Alloy Produced by Laser Melting Deposition, Mater. Charact., 2014, 97, p 132–139.

    Article  CAS  Google Scholar 

  14. C. Qiu, N.J.E. Adkins and M.M. Attallah, Microstructure and Tensile Properties of Selectively Laser-Melted and of HIPed Laser-Melted Ti-6Al-4V, Mater. Sci. Eng. A, 2013, 578, p 230–239.

    Article  CAS  Google Scholar 

  15. S. Zhang et al., Effect of Solution Temperature and Cooling Rate on Microstructure and Mechanical Properties of Laser Solid Forming Ti-6Al-4V Alloy, Chin. Opt. Lett., 2009, 7(6), p 498–501.

    Article  Google Scholar 

  16. M. Ma, Z. Wang and X. Zeng, A Comparison on Metallurgical Behaviors of 316L Stainless Steel by Selective Laser Melting and Laser Cladding Deposition, Mater. Sci. Eng. A, 2017, 685, p 265–273.

    Article  CAS  Google Scholar 

  17. W. Huang et al., Mechanical Properties of 304 Austenite Stainless Steel Manufactured by Laser Metal Deposition, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2019, 758, p 60–70.

    Article  CAS  Google Scholar 

  18. K. Mahmood, A. Khan, and A. Pinkerton, Laser Metal Deposition of Steel Components Using Machining Waste as Build Material, CLEO: 2011 - Laser Science to Photonic Applications, 2011

  19. K. Spencer and M.X. Zhang, Optimisation of Stainless Steel Cold Spray Coatings Using Mixed Particle Size Distributions, Surf. Coat. Technol., 2011, 205(21), p 5135–5140.

    Article  CAS  Google Scholar 

  20. H. Yeom et al., Cold Spray Deposition of 304L Stainless Steel to Mitigate Chloride-Induced Stress Corrosion Cracking in Canisters for Used Nuclear Fuel Storage, J. Nucl. Mater., 2020, 538, p 152254.

    Article  CAS  Google Scholar 

  21. A. Valente, D. Gitardi and E. Carpanzano, Highly Efficient Compact Cold Spray System for In-Situ Repairing of Stainless Steel Material Components, CIRP Ann., 2020, 69(1), p 181–184.

    Article  Google Scholar 

  22. C. Massar et al., Heat Treatment of Recycled Battlefield Stainless-Steel Scrap for Cold Spray Applications, JOM (1989), 2020, 72(9), p 3080–3089.

    Article  CAS  Google Scholar 

  23. H.S. Khatak and B. Raj, Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, Elsevier Science, Burlington, 2002.

    Book  Google Scholar 

  24. R.B. Patel et al., Formation of Stainless Steel–Carbon Nanotube Composites Using a Scalable Chemical Vapor Infiltration Process, J. Mater. Sci., 2013, 48(3), p 1387–1395.

    Article  CAS  Google Scholar 

  25. N.E. Tenaglia, R.E. Boeri and A.D. Basso, Mechanical Properties of a Carbide-Free Bainitic Cast Steel with Dispersed Free Ferrite, Mater. Sci. Technol., 2020, 36(1), p 108–117.

    Article  CAS  Google Scholar 

  26. C.J. Li, et al., Effect of Spray Angle on Deposition Characteristics in Cold Spraying, Advancing the Science and Applying the Technology, 2003

  27. G. Li, X.-F. Wang and W.-Y. Li, Effect of different incidence angles on bonding performance in cold spraying, Trans. Nonferrous Met. Soc. China, 2007, 17(1), p 116–121.

    Article  Google Scholar 

  28. C.A. Schuh and T.G. Nieh, Hardness and Abrasion Resistance of Nanocrystalline Nickel Alloys Near the Hall-Petch Breakdown Regime, MRS Proc., 2002, 740, p I18.

    Article  Google Scholar 

  29. N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806.

    Article  CAS  Google Scholar 

  30. A.V. Radhamani et al., Structural, Mechanical and Tribological Investigations of CNT-316 Stainless Steel Nanocomposites Processed via Spark Plasma Sintering, Tribol. Int., 2020, 152, p 106524.

    Article  CAS  Google Scholar 

  31. P.S. Follansbee, L.E. Murr, K.P. Staudhammer, and M.A. Meyers Eds., Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, Marcel Dekker, Inc., New York, 1986, p 451

    Google Scholar 

  32. H. Conrad, Grain Size Dependence of the Plastic Deformation Kinetics in Cu, Mater. Sci. Eng. A, 2003, 341(1), p 216–228.

    Article  Google Scholar 

  33. A.V. Radhamani, H.C. Lau, and S. Ramakrishna, Structural, Mechanical and Corrosion Properties of CNT-304 Stainless Steel Nanocomposites, Prog. Nat. Sci. Mater. Int., 2019, 29(5), p 595–602.

    Article  CAS  Google Scholar 

  34. A. Radhamani, H.C. Lau and S. Ramakrishna, Nanocomposite Coatings on Steel for Enhancing the Corrosion Resistance: A Review, J. Compos. Mater., 2020, 54(5), p 681–701.

    Article  CAS  Google Scholar 

  35. F.-Y. Ma, Corrosive Effects of Chlorides on Metals, IntechOpen, London, 2012.

    Book  Google Scholar 

  36. S.S. Hwang et al., Role of Grain Boundary Carbides in Cracking Behavior of Ni Base Alloys, Nucl. Eng. Technol., 2013, 45(1), p 73–80.

    Article  CAS  Google Scholar 

  37. F. Silva et al., Dissolution of Grain Boundary Carbides by the Effect of Solution Annealing Heat Treatment and Aging Treatment on Heat-Resistant Cast Steel HK30, Metals, 2017, 7(7), p 251.

    Article  Google Scholar 

  38. E.E. Stansbury and R.A. Buchanan, Fundamentals of Electrochemical Corrosion, ASM International, Materials Park, 2000.

    Book  Google Scholar 

  39. N. Perez, Electrochemistry and Corrosion Science, 2nd ed. Springer, Cham, 2016.

    Book  Google Scholar 

  40. J. Li et al., The Effect of Specific Energy Density on Microstructure and Corrosion Resistance of CoCrMo Alloy Fabricated by Laser Metal Deposition, Materials (1996-1944), 2019, 12(8), p 1321.

    Article  CAS  Google Scholar 

  41. H.R. Abedi and M. Salehi, Effect of Post-Oxidizing Temperature on Tribological and Corrosion Behavior of Plasma Nitrided Austenitic Stainless Steel, Mater. Des., 2011, 32(4), p 2100–2106.

    Article  CAS  Google Scholar 

  42. S. Alvi, K. Saeidi, and F. Akhtar, High Temperature Tribology and Wear of Selective Laser Melted (SLM) 316L Stainless Steel, Wear, 2020, 448–449, p 203228.

    Article  Google Scholar 

  43. R. Kumar et al., Assessment of 3D Printed Steels and Composites Intended for Wear Applications in Abrasive, Dry or Slurry Erosive Conditions, Int. J. Refract Metal Hard Mater., 2020, 86, p 105126.

    Article  CAS  Google Scholar 

  44. A. Lanzutti et al., High Temperature Study of the Evolution of the Tribolayer in Additively Manufactured AISI 316L Steel, Addit. Manuf., 2020, 34, p 101258.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Alin and team, ARTC, A*star, for their assistance in laser metal deposition (LMD) and cold spray (CS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hon Chung Lau or S. Ramakrishna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 228 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhamani, A.V., Lau, H.C. & Ramakrishna, S. 316L Stainless Steel Microstructural, Mechanical, and Corrosion Behavior: A Comparison Between Spark Plasma Sintering, Laser Metal Deposition, and Cold Spray. J. of Materi Eng and Perform 30, 3492–3501 (2021). https://doi.org/10.1007/s11665-021-05571-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05571-0

Keywords

Navigation