Skip to main content
Log in

Scientometric Review of Trends on the Mechanical Properties of Additive Manufacturing and 3D Printing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nowadays, the challenges of the industry increasingly demand the manufacture of complex shapes with great design flexibility without waste by 3D printing. Additive manufacturing, unlike traditional manufacturing techniques such as casting and machining, enables designers to rapid prototype while lowering operating costs and material waste during this process. In this way, understanding the current state of the literature related to additive manufacturing processes and the mechanical properties of 3D printed materials is of high importance to determine a research horizon in developing future works of this topic. In this paper, a bibliometric analysis, also named Scientometric science, was implemented. The tendencies and transcendental topics were determined using the Bibliometrix package for R and VOSviewer. Data were exported directly from the Scopus database with a search equation. The results showed that, of the 1271 documents analyzed, 2015 is a year where the research began its developing stage, with a growth rate of 20.8%. The USA resulted to be a leading country in publications followed by China and the UK. Likewise, it is observed that the author with the highest number of publications and h-index is C.B. Williams, followed by A.A. Zadpoor and J. Muller. Besides, the evolution in time of the keywords most used by researchers, and trends and research gaps in the study of additive manufacturing with the mechanical properties of the 3D printing materials are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. A. Le Duigou, A. Barbé, E. Guillou and M. Castro, 3D Printing of Continuous Flax Fibre Reinforced Biocomposites for Structural Applications, Mater. Des., 2019, 180, p 107884. https://doi.org/10.1016/j.matdes.2019.107884

    Article  CAS  Google Scholar 

  2. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Compos. Part B Eng., 2018, 143, p 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  3. J. Liu, L. Sun, W. Xu, Q. Wang, S. Yu and J. Sun, Current Advances and Future Perspectives of 3D Printing Natural-Derived Biopolymers, Carbohydr. Polym., 2019, 207, p 297–316. https://doi.org/10.1016/j.carbpol.2018.11.077

    Article  CAS  Google Scholar 

  4. S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue and C. Charitidis, Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities, Mater. Today, 2018, 21(1), p 22–37. https://doi.org/10.1016/j.mattod.2017.07.001

    Article  Google Scholar 

  5. J.R.C. Dizon, A.H. Espera, Q. Chen and R.C. Advincula, Mechanical Characterization of 3D-Printed Polymers, Addit. Manuf., 2018, 20, p 44–67. https://doi.org/10.1016/j.addma.2017.12.002

    Article  CAS  Google Scholar 

  6. I.T. Ozbolat and M. Hospodiuk, Current Advances and Future Perspectives in Extrusion-Based Bioprinting, Biomaterials, 2016, 76, p 321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076

    Article  CAS  Google Scholar 

  7. A. Gebisa and H. Lemu, Investigating Effects of Fused-Deposition Modeling (FDM) Processing Parameters on Flexural Properties of ULTEM 9085 Using Designed Experiment, Materials (Basel), 2018, 11(4), p 500. https://doi.org/10.3390/ma11040500

    Article  CAS  Google Scholar 

  8. M. Lille, A. Nurmela, E. Nordlund, S. Metsä-Kortelainen and N. Sozer, Applicability of Protein and Fiber-Rich Food Materials in Extrusion-Based 3D Printing, J. Food Eng., 2018, 220, p 20–27. https://doi.org/10.1016/j.jfoodeng.2017.04.034

    Article  CAS  Google Scholar 

  9. M. Mao et al., The Emerging Frontiers and Applications of High-Resolution 3D Printing, Micromachines, 2017 https://doi.org/10.3390/mi8040113

    Article  Google Scholar 

  10. S.L. Voon, J. An, G. Wong, Y. Zhang and C.K. Chua, 3D Food Printing: A Categorised Review of Inks and Their Development, Virtual Phys. Prototyp., 2019, 14(3), p 203–218. https://doi.org/10.1080/17452759.2019.1603508

    Article  Google Scholar 

  11. V.C.-F. Li, X. Kuang, C.M. Hamel, D. Roach, Y. Deng and H.J. Qi, Cellulose Nanocrystals Support Material for 3D Printing Complexly Shaped Structures via Multi-materials-Multi-methods Printing, Addit. Manuf., 2019, 28, p 14–22. https://doi.org/10.1016/j.addma.2019.04.013

    Article  CAS  Google Scholar 

  12. A.M. Forster, Materials Testing Standards for Additive Manufacturing of Polymer Materials: State of the Art and Standards Applicability, Gaithersburg, MD, 2015 https://doi.org/10.6028/NIST.IR.8059

    Article  Google Scholar 

  13. C.H. Kim, H.M. Cho and M.E. Lee, Synthesis and Physical Property of Multi-functional Siloxane Protective Coating Materials Applicable for Electronic Components, Bull. Korean Chem. Soc., 2014, 35(6), p 1665–1669. https://doi.org/10.5012/bkcs.2014.35.6.1665

    Article  CAS  Google Scholar 

  14. E.M. Palmero et al., Composites Based on Metallic Particles And Tuned Filling Factor for 3D-Printing by Fused Deposition Modeling, Compos. Part A Appl. Sci. Manuf., 2019, 124, p 105497. https://doi.org/10.1016/j.compositesa.2019.105497

    Article  CAS  Google Scholar 

  15. A.W. Gebisa and H.G. Lemu, Influence of 3D Printing FDM Process Parameters on Tensile Property of ULTEM 9085, Procedia Manuf., 2019, 30, p 331–338. https://doi.org/10.1016/j.promfg.2019.02.047

    Article  Google Scholar 

  16. Y. Song, Y. Li, W. Song, K. Yee, K.-Y. Lee and V.L. Tagarielli, Measurements of the Mechanical Response of Unidirectional 3D-printed PLA, Mater. Des., 2017, 123, p 154–164. https://doi.org/10.1016/j.matdes.2017.03.051

    Article  CAS  Google Scholar 

  17. T. Letcher and M. Waytashek, Material Property Testing of 3D-Printed Specimen in PLA on an Entry-Level 3D Printer, 2014. http://doi.org/https://doi.org/10.1115/IMECE2014-39379

  18. R.A. García-Léon, J. Martínez-Trinidad and I. Campos-Silva, Historical Review on the Boriding Process using Bibliometric Analysis, Trans. Indian Inst. Met., 2021 https://doi.org/10.1007/s12666-020-02174-6

    Article  Google Scholar 

  19. J.E. Hirsch, An Index to Quantify an Individual’s Scientific Research Output, Proc. Natl. Acad. Sci., 2005, 102(46), p 16569–16572. https://doi.org/10.1073/pnas.0507655102

    Article  CAS  Google Scholar 

  20. J.P. Kamdem et al., Research Trends in Food Chemistry: A Bibliometric Review of its 40 Years Anniversary (1976–2016), Food Chem., 2019, 294, p 448–457. https://doi.org/10.1016/j.foodchem.2019.05.021

    Article  CAS  Google Scholar 

  21. Y. Wang et al., 3D Printing Biocompatible l-Arg/GNPs/PLA Nanocomposites with Enhanced Mechanical Property and Thermal Stability, J. Mater. Sci., 2020, 55(12), p 5064–5078. https://doi.org/10.1007/s10853-020-04353-8

    Article  CAS  Google Scholar 

  22. X. Xu et al., Three Dimensionally Free-Formable Graphene Foam with Designed Structures for Energy and Environmental Applications, ACS Nano, 2020, 14(1), p 937–947. https://doi.org/10.1021/acsnano.9b08191

    Article  CAS  Google Scholar 

  23. J. Saroia et al., A Review on 3D Printed Matrix Polymer Composites: its Potential and Future Challenges, Int. J. Adv. Manuf. Technol., 2020, 106(5–6), p 1695–1721. https://doi.org/10.1007/s00170-019-04534-z

    Article  Google Scholar 

  24. Y. Wang, W.-D. Müller, A. Rumjahn and A. Schwitalla, Parameters Influencing the Outcome of Additive Manufacturing of Tiny Medical Devices Based on PEEK, Materials (Basel), 2020, 13(2), p 466. https://doi.org/10.3390/ma13020466

    Article  CAS  Google Scholar 

  25. Q. Wei et al., Atomic-Scale and Experimental Investigation on the Micro-Structures and Mechanical Properties of PLA Blending with CMC for Additive Manufacturing, Mater. Des., 2019 https://doi.org/10.1016/j.matdes.2019.108158

    Article  Google Scholar 

  26. A. Nycz, V. Kishore, J. Lindahl, C. Duty, C. Carnal and V. Kunc, Controlling Substrate Temperature with Infrared Heating to Improve Mechanical Properties of Large-Scale Printed Parts, Addit. Manuf., 2020, 33, p 101068. https://doi.org/10.1016/j.addma.2020.101068

    Article  CAS  Google Scholar 

  27. H.L. Tekinalp et al., High Modulus Biocomposites via Additive Manufacturing: Cellulose Nanofibril Networks as ‘Microsponges,’ Compos. Part B Eng., 2019, 173, p 106817. https://doi.org/10.1016/j.compositesb.2019.05.028

    Article  CAS  Google Scholar 

  28. J. Lindahl, C. Hershey, G. Gladysz, V. Mishra, K. Shah, and V. Kunc, Extrusion Deposition Additive Manufacturing Utilizing High Glass Transition Temperature Latent Cured Epoxy Systems. 2019. http://doi.org/https://doi.org/10.33599/nasampe/s.19.1615

  29. V. Kishore et al., “Predicting sharkskin instability in extrusion additive manufacturing of reinforced thermoplastics,” Solid Free. Fabr. 2017 Proc. 28th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2017, pp. 1696–1704, 2017, https://www.semanticscholar.org/paper/Predicting-sharkskin-instability-in-extrusion-of-Kishore-Ajinjeru/7f2486a924843fdcd915763123726cfb11c83c1f?p2df

  30. H. L. Tekinalp et al., Effect of surface treatment of microfiberlated cellulose fibers on biocomposite properties and additive manufacturing process, CAMX 2019 - Compos. Adv. Mater. Expo, 2020

  31. L.B. Bezek, M.P. Cauchi, R. De Vita, J.R. Foerst and C.B. Williams, 3D Printing Tissue-Mimicking Materials for Realistic Transseptal Puncture Models, J. Mech. Behav. Biomed. Mater., 2020, 110, p 103971. https://doi.org/10.1016/j.jmbbm.2020.103971

    Article  CAS  Google Scholar 

  32. H. Miyanaji, D. Ma, M.A. Atwater, K.A. Darling, V.H. Hammond and C.B. Williams, Binder Jetting Additive Manufacturing of Copper Foam Structures, Addit. Manuf., 2020, 32, p 100960. https://doi.org/10.1016/j.addma.2019.100960

    Article  CAS  Google Scholar 

  33. J. Herzberger, J.M. Sirrine, C.B. Williams and T.E. Long, Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing, Prog. Polym. Sci., 2019, 97, p 101144. https://doi.org/10.1016/j.progpolymsci.2019.101144

    Article  CAS  Google Scholar 

  34. L.D. Sturm, M.I. Albakri, P.A. Tarazaga and C.B. Williams, In Situ Monitoring of Material Jetting Additive Manufacturing Process via Impedance Based Measurements, Addit. Manuf., 2019, 28, p 456–463. https://doi.org/10.1016/j.addma.2019.05.022

    Article  CAS  Google Scholar 

  35. C.A. Chatham, T.E. Long and C.B. Williams, A Review of the Process Physics and Material Screening Methods for Polymer Powder Bed Fusion Additive Manufacturing, Prog. Polym. Sci., 2019, 93, p 68–95. https://doi.org/10.1016/j.progpolymsci.2019.03.003

    Article  CAS  Google Scholar 

  36. M.J. Mirzaali et al., Mechanics of Bioinspired Functionally Graded Soft-Hard Composites Made by Multi-material 3D Printing, Compos. Struct., 2020, 237, p 111867. https://doi.org/10.1016/j.compstruct.2020.111867

    Article  Google Scholar 

  37. Y. Li et al., Additively Manufactured Functionally Graded Biodegradable Porous Iron, Acta Biomater., 2019, 96, p 646–661. https://doi.org/10.1016/j.actbio.2019.07.013

    Article  CAS  Google Scholar 

  38. L. Safai, J.S. Cuellar, G. Smit and A.A. Zadpoor, A Review of the Fatigue Behavior of 3D Printed Polymers, Addit. Manuf., 2019, 28, p 87–97. https://doi.org/10.1016/j.addma.2019.03.023

    Article  CAS  Google Scholar 

  39. C. de Jonge, H. Kolken and A. Zadpoor, Non-Auxetic Mechanical Metamaterials, Materials (Basel), 2019, 12(4), p 635. https://doi.org/10.3390/ma12040635

    Article  CAS  Google Scholar 

  40. A.A. Zadpoor, Mechanical Performance of Additively Manufactured Meta-Biomaterials, Acta Biomater., 2019, 85, p 41–59. https://doi.org/10.1016/j.actbio.2018.12.038

    Article  CAS  Google Scholar 

  41. C.W. Visser, D.N. Amato, J. Mueller and J.A. Lewis, Architected Polymer Foams via Direct Bubble Writing, Adv. Mater., 2019, 31(46), p 1904668. https://doi.org/10.1002/adma.201904668

    Article  CAS  Google Scholar 

  42. J. Mueller and K. Shea, Buckling, Build Orientation, and Scaling Effects in 3D Printed Lattices, Mater. Today Commun., 2018, 17, p 69–75. https://doi.org/10.1016/j.mtcomm.2018.08.013

    Article  CAS  Google Scholar 

  43. J. Mueller and K. Shea, Stepwise Graded Struts for Maximizing Energy Absorption in Lattices, Extrem. Mech. Lett., 2018, 25, p 7–15. https://doi.org/10.1016/j.eml.2018.10.006

    Article  Google Scholar 

  44. J. Mueller, D. Courty, M. Spielhofer, R. Spolenak and K. Shea, Mechanical Properties of Interfaces in Inkjet 3D Printed Single- and Multi-Material Parts, 3D Print Addit. Manuf., 2017, 4(4), p 193–199. https://doi.org/10.1089/3dp.2017.0038

    Article  Google Scholar 

  45. J. Mueller, K. Shea and C. Daraio, Mechanical Properties of Parts Fabricated with Inkjet 3D Printing Through Efficient Experimental Design, Mater. Des., 2015, 86, p 902–912. https://doi.org/10.1016/j.matdes.2015.07.129

    Article  Google Scholar 

  46. C. Vyas et al., 3D Printing of Silk Microparticle Reinforced Polycaprolactone Scaffolds for Tissue Engineering Applications, Mater. Sci. Eng. C, 2021, 118, p 111433. https://doi.org/10.1016/j.msec.2020.111433

    Article  CAS  Google Scholar 

  47. J. Hou et al., Fabricating 3D Printable BIIR/PP TPV via Masterbatch and Interfacial Compatibilization, Compos. Part B Eng., 2020, 199, p 108220. https://doi.org/10.1016/j.compositesb.2020.108220

    Article  CAS  Google Scholar 

  48. R. Thakkar, A.R. Pillai, J. Zhang, Y. Zhang, V. Kulkarni and M. Maniruzzaman, Novel On-Demand 3-Dimensional (3-D) Printed Tablets Using Fill Density as an Effective Release-Controlling Tool, Polymers (Basel), 2020, 12(9), p 1872. https://doi.org/10.3390/polym12091872

    Article  CAS  Google Scholar 

  49. J. Zhang et al., Zirconia Toughened Hydroxyapatite Biocomposite Formed by a DLP 3D Printing Process for Potential Bone Tissue Engineering, Mater. Sci. Eng. C, 2019, 105, p 110054. https://doi.org/10.1016/j.msec.2019.110054

    Article  CAS  Google Scholar 

  50. C.N. Kuo et al., Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy, Virtual Phys. Prototyp., 2020, 15(1), p 120–129. https://doi.org/10.1080/17452759.2019.1698967

    Article  Google Scholar 

  51. H.W. Tan, J. An, C.K. Chua and T. Tran, Metallic Nanoparticle Inks for 3D Printing of Electronics, Adv. Electron. Mater., 2019, 5(5), p 1800831. https://doi.org/10.1002/aelm.201800831

    Article  CAS  Google Scholar 

  52. S. Yuan, F. Shen, C.K. Chua and K. Zhou, Polymeric Composites for Powder-Based Additive Manufacturing: Materials and Applications, Prog. Polym. Sci., 2019, 91, p 141–168. https://doi.org/10.1016/j.progpolymsci.2018.11.001

    Article  CAS  Google Scholar 

  53. H.W. Tan, T. Tran and C.K. Chua, Review of 3D Printed Electronics: Metallic Nanoparticles Inks, Proc Int Conf Prog Addit Manuf, 2018 https://doi.org/10.25341/D42S3G

    Article  Google Scholar 

  54. E. Luis et al., 3D Printed Silicone Meniscus Implants: Influence of the 3D Printing Process on Properties of Silicone Implants, Polymers (Basel), 2020, 12(9), p 2136. https://doi.org/10.3390/polym12092136

    Article  CAS  Google Scholar 

  55. G.D. Goh, Y.L. Yap, H.K.J. Tan, S.L. Sing, G.L. Goh and W.Y. Yeong, Process–Structure–Properties in Polymer Additive Manufacturing via Material Extrusion: A Review, Crit. Rev. Solid State Mater. Sci., 2020, 45(2), p 113–133. https://doi.org/10.1080/10408436.2018.1549977

    Article  CAS  Google Scholar 

  56. G.L. Goh, S. Agarwala and W.Y. Yeong, Directed and On-Demand Alignment of Carbon Nanotube: A Review toward 3D Printing of Electronics, Adv. Mater. Interfaces, 2019, 6(4), p 1801318. https://doi.org/10.1002/admi.201801318

    Article  Google Scholar 

  57. S.L. Sing, F.E. Wiria and W.Y. Yeong, Selective Laser Melting of Lattice Structures: A Statistical Approach to Manufacturability and Mechanical Behavior, Robot. Comput. Integr. Manuf., 2018, 49, p 170–180. https://doi.org/10.1016/j.rcim.2017.06.006

    Article  Google Scholar 

  58. G.D. Goh et al., Characterization of Mechanical Properties and Fracture Mode of Additively Manufactured Carbon Fiber and Glass Fiber Reinforced Thermoplastics, Mater. Des., 2018, 137, p 79–89. https://doi.org/10.1016/j.matdes.2017.10.021

    Article  CAS  Google Scholar 

  59. S. Peng et al., Additive Manufacturing of Three-Dimensional (3D)-Architected CoCrFeNiMn High- Entropy Alloy with Great Energy Absorption, Scr. Mater., 2021, 190, p 46–51. https://doi.org/10.1016/j.scriptamat.2020.08.028

    Article  CAS  Google Scholar 

  60. Q. Cheng, Y. Liu, J. Lyu, Q. Lu, X. Zhang and W. Song, 3D Printing-Directed Auxetic Kevlar Aerogel Architectures with Multiple Functionalization Options, J. Mater. Chem. A, 2020, 8(28), p 14243–14253. https://doi.org/10.1039/D0TA02590A

    Article  CAS  Google Scholar 

  61. T. Liu, L. Liu, C. Zeng, Y. Liu and J. Leng, 4D Printed Anisotropic Structures with Tailored Mechanical Behaviors and Shape Memory Effects, Compos. Sci. Technol., 2020, 186, p 107935. https://doi.org/10.1016/j.compscitech.2019.107935

    Article  CAS  Google Scholar 

  62. B. Chang et al., Ultrafast Printing of Continuous Fiber-Reinforced Thermoplastic Composites with Ultrahigh Mechanical Performance by Ultrasonic-Assisted Laminated Object Manufacturing, Polym. Compos., 2020 https://doi.org/10.1002/pc.25744

    Article  Google Scholar 

  63. S.F. Li et al., Commercial Scale Uniform Powder Coating for Metal Additive Manufacturing, JOM, 2020 https://doi.org/10.1007/s11837-020-04386-z

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Research and Extension Division “DIE” of the Francisco de Paula Santander University Ocaña, Colombia. This work was supported by the research Grant 158-08-021.

Author information

Authors and Affiliations

Authors

Contributions

R.A. García-León was involved in methodology, investigation, formal analysis, funding acquisition, writing—original draft, writing, review and editing. J. Gomez-Camperos performed analysis tools, formal analysis, and other contributions. H.Y. Jaramillo contributed to data, formal analysis, and other contributions.

Corresponding author

Correspondence to R. A. García-León.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-León, R.A., Gómez-Camperos, J.A. & Jaramillo, H.Y. Scientometric Review of Trends on the Mechanical Properties of Additive Manufacturing and 3D Printing. J. of Materi Eng and Perform 30, 4724–4734 (2021). https://doi.org/10.1007/s11665-021-05524-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05524-7

Keywords