Skip to main content
Log in

Physical Properties of Directionally Solidified Al-1.9Mn-5Fe Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 25 January 2021

This article has been updated

Abstract

Al-1.9Mn-5Fe (wt.%) alloy was prepared by adding 5 wt.% Fe to the eutectic Al-Mn alloy. This alloy undergone controlled solidification under four different growth velocities (V) in Bridgman-type furnace. Eutectic spacings (λ), microhardness (HV), ultimate tensile strength (σU) and electrical resistivity (ρ) of these alloys were determined. While the HV and σU increased with increasing V values or decreasing λ, the elongation (δ) values decreased. In addition, relationships between these parameters were investigated using linear regression analysis. Microstructure photographs of directionally solidified samples were taken by optical microscope and scanning electron microscope (SEM). The eutectic spacings were measured from these photographs. The relationships among growth velocity (V), eutectic spacing (λ), microhardness (HV), ultimate tensile strength (σU) and electrical resistivity (ρ) were measured by suitable method and tests. The ρ measurements were carried out depending on V and temperature (T). While temperature coefficient of resistivity (αTCR) was calculated from the ρT curve, the values of thermal conductivity (K) predicted by Wiedemann–Franz (W–F) and Smith–Palmer (S–P) equations. It was found that the microstructure, microhardness, tensile strength and electrical resistivity were affected by both eutectic spacing and the growth velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. E.J. Lavernia and N.J. Grant, Aluminium-Lithium Alloys, J. Mater. Sci., 1987, 22, p 1521–1529

    Article  CAS  Google Scholar 

  2. M. Gündüz and E. Çadırlı, Directional Solidification of Aluminium–Copper Alloys, Mater. Sci. Eng. A, 2002, 327, p 167–185

    Article  Google Scholar 

  3. H. Kaya, U. Böyük, E. Çadırlı, and N. Maraşlı, Influence of Growth Rate on Microstructure, Microhardness and Electrical Resistivity of Directionally Solidified Al-7 wt.% Ni Hypo-Eutectic Alloy, Met. Mater. Int., 2013, 19, p 39–44

    Article  CAS  Google Scholar 

  4. E. Çadırlı, Effect of Cooling Rate and Composition on Mechanical Properties of the Directionally Solidified Al-rich Al-Cu Alloys, Met. Mater. Int., 2013, 19, p 411–422

    Article  Google Scholar 

  5. E. Çadırlı, E. Nergiz, H. Kaya, U. Büyük, M. Şahin, and M. Gündüz, Effect of Growth Velocity on Microstructure and Mechanical Properties of Directionally Solidified 7075 Alloy, Int. J. Cast Met. Res., 2020, 33, p 11–23

    Article  Google Scholar 

  6. Q. Zhao, Z. Qian, X. Cui, Y. Wu, and X. Liu, Optimizing Microstructures of Dilute Al-Fe-Si Alloys Designed with Enhanced Electrical Conductivity and Tensile Strength, J. Alloys Compd., 2015, 650, p 768–776

    Article  CAS  Google Scholar 

  7. D. Pavlyuchkov, S. Balanetskyy, W. Kowalski, M. Surowiec, and B. Grushko, Stable Decagonal Quasicrystals in the Al-Fe-Cr and Al-Fe-Mn Alloy Systems, J. Alloys Compd., 2009, 477, p L41–L44

    Article  CAS  Google Scholar 

  8. O. Engler, G. Laptyeva, and N. Wang, Impact of Homogenization on Microchemistry and Recrystallization of the Al-Fe-Mn Alloy AA 8006, Mater. Charact., 2013, 79, p 60–75

    Article  CAS  Google Scholar 

  9. S. Balanetskyy, D. Pavlyuchkov, T. Velikanova, and B. Grushko, The Al-Rich Region of the Al-Fe-Mn alloy system, J. Alloys Compd., 2015, 619, p 211–220

    Article  CAS  Google Scholar 

  10. R. Oliveira, R. Kakitani, L.R. Ramos, D.L. Gonçalves, A. Garcia, and N. Cheung, The Roles of Mn and Ni Additions to Fe Contaminated Al in Neutralizing Fe and Stabilizing the Cellular α-Al Microstructure, J. Sustain. Metall., 2019, 5, p 561–580

    Article  Google Scholar 

  11. W.W. Zhang, B. Lin, D.T. Zhang, and Y.Y. Li, Microstructures and Mechanical Properties of Squeeze Cast Al-5.0Cu-0.6Mn Alloys with Different Fe Content, Mater. Design., 2013, 52, p 225–233

    Article  CAS  Google Scholar 

  12. I.J. Polmear, Light Alloys: Metallurgy of the Light Metals, Wiley, Hoboken, 1995

    Google Scholar 

  13. W.T. Denholm, J.D. Esdaile, N.G. Siviour, and B.W. Wilson, The Nature of the FeAl3 Liquid (FeMn)Al6 Reaction in the Al-Fe-Mn System, Metall. Mater. Trans. A, 1987, 18, p 393–397

    Article  Google Scholar 

  14. S.G. Shabestari, The Effect Fe and Mn on Formation of Intermetallic Compounds in Al-Si Alloys, Mater. Sci. Eng. A, 2004, 383, p 289–298

    Article  Google Scholar 

  15. J.Y. Hwang, H.W. Doty, and M.J. Kaufman, The Effects of Mn Additions on the Microstructure and Mechanical Properties of Al-Si-Cu Casting Alloys, Mater. Sci. Eng. A., 2008, 488, p 496–504

    Article  Google Scholar 

  16. C.M. Dinnis, J.A. Taylor, and A.K. Dahle, Interactions Between Iron, Manganese, and the Al-Si Eutectic in Hypoeutectic Al-Si Alloys, Metall. Mater. Trans. A, 2006, 37, p 3283–3291

    Article  Google Scholar 

  17. L.F. Mondolfo, Manganese in Aluminum Alloys, The Manganese Centre, Paris, 1978

    Google Scholar 

  18. R. Mehrabian, M. Kaene, and M.C. Flemings, Interdendritic Fluid Flow and Macrosegregation; Influence of Gravity, Met. Trans, 1970, 1, p 1209–1220

    Article  CAS  Google Scholar 

  19. D.G. Eskin, J. Zuidema, V.I. Savran, and L. Katgerman, Structure Formation and Macrosegregation Under Different Process Conditions During DC Casting, Mater. Sci. Eng. A, 2004, 384, p 232–244

    Article  Google Scholar 

  20. A.P. Boeira, I.L. Ferreira, and A. Garcia, Alloy Composition and Metal/Mold Heat Transfer Efficiency Affecting Inverse Segregation and Porosity of As-Cast Al–Cu Alloys, Mater. Des., 2009, 30, p 2090–2098

    Article  CAS  Google Scholar 

  21. C.M. Allen, S. Kumar, L. Carrol, K.A.Q. O’Reilly, and H. Cama, Electron Beam Surface Melting of Model 1200 Al alloys, Mater. Sci. Eng. A, 2001, 304–306, p 604–607

    Article  Google Scholar 

  22. M. Karlik, J. Siegl, M. Slamova, and Y. Birol, Study of the Damage of AA 8006 Twin-Roll Cast Thin Sheets During Forming of Heat Exchanger Fins, Mater. Sci. Forum, 2000, 331–337, p 619–624

    Article  Google Scholar 

  23. B. Dutta and M. Rettenmayr, Effect of Cooling Rate on the Solidification Behaviour of Al-Fe-Si Alloys, Mater. Sci. Eng. A, 2000, 283, p 218–224

    Article  Google Scholar 

  24. Y.H. Zhang, Y.C. Liu, Y.J. Han, C. Wei, and Z.M. Gao, The Role of Cooling Rate in the Microstructure of Al-Fe-Si Alloy with High Fe and Si Contents, J. Alloys Compd., 2009, 473, p 442–445

    Article  CAS  Google Scholar 

  25. P.R. Goulart, J.E. Spinelli, N. Cheung, and A. Garcia, The Effects of Cell Spacing and Distribution of Intermetallic Fibers on the Mechanical Properties of Hypoeutectic Al-Fe Alloys, Mater. Chem. Phys., 2010, 119, p 272–278

    Article  CAS  Google Scholar 

  26. I.L. Ferreira, J.A. de Castro, and A. Garcia, Determination of Heat Capacity of Pure Metals, Compounds and Alloys by Analytical and Numerical Methods, Thermochim. Acta, 2019, 682, p 178418

    Article  CAS  Google Scholar 

  27. J.R. Davis, Ed., ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International, Materials Park, 1993

    Google Scholar 

  28. E. Çadırlı, U. Boyuk, S. Engin, H. Kaya, N. Maraşlı, and A. Ülgen, Experimental Investigation of the Effect of Solidification Processing Parameters on the Rod Spacings in the Sn-1.2 wt.% Cu Alloy, J. Alloys Compd., 2009, 486, p 199–206

    Article  Google Scholar 

  29. E. Çadırlı, A. Aker, Y. Kaygısız, and M. Şahin, Influences of Growth Velocity and Fe Content on Microstructure, Microhardness and Tensile Properties of Directionally Solidified Al-1.9Mn-xFe Ternary Alloys, Mater. Res., 2017, 20, p 801–813

    Article  Google Scholar 

  30. C. Kittel, Introduction to Solid State Physics, 6th ed., Wiley, New York, 1965

    Google Scholar 

  31. D.R. Poirier and G.H. Geiger, Transport Phenomena in Materials Processing, Metals and Materials Society, Pittsburgh, Mineral, 1994

    Google Scholar 

  32. E. Çadırlı, M. Şahin, R. Kayalı, M. Arı, and S. Durmuş, Dependence of Electrical and Thermal Conductivity on Temperature in Directionally Solidified Sn-3.5 wt.% Ag Eutectic Alloy, J. Mater. Sci. Mater. Electron., 2011, 22, p 1709–1714

    Article  Google Scholar 

  33. M. Gündüz, H. Kaya, E. Çadırlı, and A. Özmen, Interflake Spacings and Undercoolings in Al-Si Irregular Eutectic Alloy, Mater. Sci. Eng. A, 2004, 369, p 215–229

    Article  Google Scholar 

  34. S. Steinbach and L. Ratke, The Influence of Fluid Flow on the Microstructure of Directionally Solidified AlSi-Base Alloys, Metall. Mater. Trans. A, 2007, 38, p 1388–1394

    Article  Google Scholar 

  35. A. Aker, S. Engin, İ. Yılmazer, and H. Kaya, Influence of the Growth Rate on Physical Properties in the Aluminum-Antimony Eutectic Alloy, Int. J. Mater. Eng. Technol., 2013, 9, p 59–76

    Google Scholar 

  36. J. Fan, X. Li, Y. Su, J. Guo, and H. Fu, The Microstructure Parameters and Microhardness of Directionally Solidified Ti-43Al-3Si Alloy, J. Alloys Compd., 2010, 506, p 593–599

    Article  CAS  Google Scholar 

  37. E. Çadırlı, İ. Yılmazer, M. Sahin, and H. Kaya, Investigation of the Some Physical Properties of the Directionally Solidified Al-Cu-Co Ternary Eutectic Alloy, Trans. Indian Inst. Met., 2015, 68, p 817–827

    Article  Google Scholar 

  38. J.T. Guo, C.M. Xu, X.H. Du, and H. Fu, The Effect of Solidification Rate on Microstructure and Mechanical Properties of an Eutectic NiAl-Cr(Mo)-Hf Alloy, Mater. Lett., 2004, 58, p 3233–3236

    Article  CAS  Google Scholar 

  39. S. Engin, U. Büyük, and N. Maraşlı, The Effects of Microstructure and Growth Rate on Microhardness, Tensile Strength, and Electrical Resistivity for Directionally Solidified Al-Ni-Fe Alloys, J. Alloy. Compd., 2016, 660, p 21–23

    Article  Google Scholar 

  40. J. Lapin and J. Marecek, Effect of Growth Rate on Microstructure and Mechanical Properties of Directionally Solidified Multiphase Intermetallic Ni-Al-Cr-Ta-Mo-Zr Alloy, Intermetallics, 2006, 14, p 1339–1344

    Article  CAS  Google Scholar 

  41. J. Lapin, L. Ondrus, and M. Nazmy, Directional Solidification of Intermetallic Ti-46Al-2W-0.5Si Alloy in Alumina Moulds, Intermetallics, 2002, 10, p 1019–1031

    Article  CAS  Google Scholar 

  42. J. Fan, X. Li, Y. Su, J. Guo, and H. Fu, Dependency of Microhardness on Solidification Processing Parameters and Microstructure Characteristics in the Directionally Solidified Ti-46Al-0.5W-0.5Si Alloy, J. Alloy Compd., 2010, 504, p 60–64

    Article  CAS  Google Scholar 

  43. S. Khan, A. Ourdjini, Q.S. Hamed, M.A.A. Najafabadi, and R. Elliott, Hardness and Mechanical Property Relationships in Directionally Solidified Aluminium-Silicon Eutectic Alloys with Different Silicon Morphologies, J. Mater. Sci., 1993, 28, p 5957–5962

    Article  CAS  Google Scholar 

  44. U. Böyük, N. Maraşlı, E. Çadırlı, H. Kaya, and K. Keşlioğlu, Variations of Microhardness with Solidification Parameters and Electrical Resistivity with Temperature for Al-Cu-Ag Eutectic Alloy, Curr. App. Phys., 2012, 12, p 7–10

    Article  Google Scholar 

  45. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.I. Chen, Effect of Solidification Rate and Loading Mode on Deformation Behavior of Cast Al-Si-Cu-Mg Alloy with Additions of Transition Metals, Mater. Sci. Eng. A, 2015, 636, p 361–372

    Article  CAS  Google Scholar 

  46. S.G. Shabestari and F. Shahri, Influence of Modification, Solidification Conditions and Heat Treatment on the Microstructure and Mechanical Properties of A356 Aluminum Alloy, J. Mater. Sci., 2004, 39, p 2023–2032

    Article  CAS  Google Scholar 

  47. D.D. Pollock, Electrical Conduction in Solids: An Introduction, ASM, Metals Park, 1985

    Google Scholar 

Download references

Acknowledgments

This work was supported by the ERU, Scientific Research Project Unit (FBA-2015-5631). The authors are grateful for the supports to ERU Scientific Research Project Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Çadırlı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: In the headings for subsections 2.2, 2.3, 3.2, 3.3, 3.4 and 3.5, the symbols λ, ρ, σ and σU should have been used (just as used in the Abstract) for eutectic spacing, electrical resistivity, tensile strength, and ultimate tensile strength, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmazer, İ., Çadırlı, E., Kaya, H. et al. Physical Properties of Directionally Solidified Al-1.9Mn-5Fe Alloy. J. of Materi Eng and Perform 30, 1603–1610 (2021). https://doi.org/10.1007/s11665-020-05253-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05253-3

Keywords

Navigation