Skip to main content

Advertisement

Log in

Achieving High Strength in Micro-alloyed Mg-Al-Ca-Zn-Mn-Ce Alloy Sheet Processed by Single-Pass Large-Strain Rolling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A low-cost and high-strength Mg-Al-Ca-Zn-Mn-Ce-based alloy sheet has been developed and fabricated by single-pass large-strain rolling process. Effects of rolling temperatures on the microstructure and mechanical properties of the Mg sheets have been investigated. The results show that the grain sizes of the Mg sheets are remarkably refined to be ~ 1.5 and ~ 0.8 µm after rolling at 350 and 250 °C (denoted as X-350 and X-250), respectively. The fine nano-precipitates are found to distribute both within the grain interiors and along the grain boundaries. co-segregations of Ca and Zn atoms also readily occur in present Mg sample, and the solute concentration increases with the decrease in rolling temperature. Nano-precipitates and solute segregations can effectively impede the grain growth and contribute to the grain refinement in as-rolled Mg samples. Optimal mechanical properties have been obtained in X-250 sheet rolled at 250 °C, exhibiting the YS, UTS and EL of ~ 290 MPa, ~ 304 MPa and 11.6%, respectively. The ultra-fine grains, solute segregations and the intensified basal texture play the critical roles together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Wang, B.B. He, and M.X. Huang, Strong and Ductile Mg Alloys Developed by Dislocation Engineering, J. Mater. Sci. Technol., 2019, 35(3), p 394–395.

    Article  Google Scholar 

  2. Q. Liu, J. Song, H. Zhao, B. Xiao, X. Zheng, and F. Pan, Improved Edge Quality for AZ31 Sheets Using Online Heating Rolling Technique, J. Mater. Eng. Perform., 2020, 29, p 4212.

    Article  CAS  Google Scholar 

  3. H. Aghamohammadi, S.J. Hosseinipour, S.M. Rabiee, and R. Jamaati, Influence of Crystallographic Texture on the Corrosion Product Morphology and Corrosion Rate of AZ31 Plate in Simulated Body Fluid, J. Mater. Eng. Perform., 2020, 29(6), p 3824–3830.

    Article  CAS  Google Scholar 

  4. Q. Wang, B. Jiang, A. Tang, J. Fu, Z. Jiang, H. Sheng, D. Zhang, G. Huang, and F. Pan, Unveiling Annealing Texture Formation and Static Recrystallization Kinetics of Hot-Rolled Mg-Al-Zn-Mn-Ca Alloy, J. Mater. Sci. Technol., 2020, 43, p 104–118.

    Article  Google Scholar 

  5. K. Guan, F. Meng, P. Qin, Q. Yang, D. Zhang, B. Li, W. Sun, S. Lv, Y. Huang, N. Hort, J. Meng, Effects of Samarium Content on Microstructure and Mechanical Properties of Mg–0.5Zn–0.5Zr Alloy. J. Mater. Sci. Technol., 35(7), 1368-1377 (2019)

  6. M.Z. Bian, T.T. Sasaki, B.C. Suh, T. Nakata, S. Kamado, and K. Hono, A Heat-Treatable Mg–Al–Ca–Mn–Zn Sheet Alloy with Good Room Temperature Formability, Scripta Mater., 2017, 138, p 151–155.

    Article  CAS  Google Scholar 

  7. M. Zha, H.-M. Zhang, C. Wang, H.-Y. Wang, E.-B. Zhang, and Q.-C. Jiang, Prominent Role of a High Volume Fraction of Mg17Al12 Particles on Tensile Behaviors of Rolled Mg–Al–Zn Alloys, J. Alloys Compd., 2017, 728, p 682–693.

    Article  CAS  Google Scholar 

  8. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv, Ultra High-Strength Mg–Gd–Y–Zn–Zr Alloy Sheets Processed by Large-Strain Hot Rolling and Ageing, Mater. Sci. Eng. A, 2012, 547, p 93–98.

    Article  CAS  Google Scholar 

  9. J. Jiang, J. Wu, S. Ni, H. Yan, and M. Song, Improving the Mechanical Properties of a ZM61 Magnesium Alloy by Pre-Rolling and High Strain Rate Rolling, Mater. Sci. Eng. A, 2018, 712, p 478–484.

    Article  CAS  Google Scholar 

  10. C. Chen, J. Chen, H. Yan, B. Su, M. Song, and S. Zhu, Dynamic Precipitation, Microstructure and Mechanical Properties of Mg-5Zn-1Mn Alloy Sheets Prepared by High Strain-Rate Rolling, Mater. Design, 2016, 100, p 58–66.

    Article  CAS  Google Scholar 

  11. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, Y.G. Du, and X.Z. Liao, Fabrication of Mg-Al-Zn-Mn Alloy Sheets with Homogeneous Fine-Grained Structures Using High Strain-Rate Rolling in a Wide Temperature Range, Mater. Sci. Eng. A, 2013, 559, p 765–772.

    Article  CAS  Google Scholar 

  12. J. Li, D. Xie, H. Yu, R. Liu, Y. Shen, X. Zhang, C. Yang, L. Ma, H. Pan, and G. Qin, Microstructure and Mechanical Property of Multi-Pass Low-Strain Rolled Mg-Al-Zn-Mn Alloy Sheet, J. Alloys Compd., 2020, 835, p 155228.

    Article  CAS  Google Scholar 

  13. T. Nakata, C. Xu, K. Suzawa, K. Yoshida, N. Kawabe, and S. Kamado, Enhancing Mechanical Properties of Rolled Mg-Al-Ca-Mn Alloy Sheet by Zn Addition, Mater. Sci. Eng. A, 2018, 737, p 223–229.

    Article  CAS  Google Scholar 

  14. J. Li, A. Zhang, H. Pan, Y. Ren, Z. Zeng, Q. Huang, C. Yang, L. Ma, G. Qin, Effect of Extrusion Speed on Microstructure and Mechanical Properties of the Mg-Ca Binary Alloy. J. Magnes. Alloys, https://doi.org/10.1016/j.jma.2020.05.011 (2020)

  15. J.H. Lee, B.J. Kwak, T. Kong, S.H. Park, and T. Lee, Improved Tensile Properties of AZ31 Mg Alloy Subjected to Various Caliber-Rolling Strains, J. Magnes. Alloys, 2019, 7(3), p 381–387.

    Article  CAS  Google Scholar 

  16. H. Huang, H. Liu, C. Wang, J. Sun, J. Bai, F. Xue, J. Jiang, and A. Ma, Potential of Multi-Pass ECAP on Improving the Mechanical Properties of a High-Calcium-Content Mg-Al-Ca-Mn Alloy, J Magnes. Alloys, 2019, 7(4), p 617–627.

    Article  CAS  Google Scholar 

  17. R. Cheng, M. Li, S. Du, H. Pan, Y. Liu, M. Gao, X. Zhang, Q. Huang, C. Yang, L. Ma, G. Qin, Effects of Single-Pass Large-Strain Rolling on Microstructure and Mechanical Properties of Mg-Al-Ca Alloy Sheet. Mater. Sci. Eng. A, https://doi.org/10.1016/j.msea.2020.139332 (2020)

  18. H.Y. Wang, J. Rong, G.J. Liu, M. Zha, C. Wang, D. Luo, and Q.C. Jiang, Effects of Zn on the Microstructure and Tensile Properties of As-Extruded Mg-8Al-2Sn Alloy, Mater. Sci. Eng. A, 2017, 698, p 249–255.

    Article  CAS  Google Scholar 

  19. A. Zhang, R. Kang, L. Wu, H. Pan, H. Xie, Q. Huang, Y. Liu, Z. Ai, L. Ma, Y. Ren, and G. Qin, A New Rare-Earth-Free Mg-Sn-Ca-Mn Wrought Alloy with Ultra-High Strength and Good Ductility, Mater. Sci. Eng. A., 2019, 754, p 269–274.

    Article  CAS  Google Scholar 

  20. J. She, P. Peng, L. Xiao, A.T. Tang, Y. Wang, and F.S. Pan, Development of High Strength and Ductility in Mg–2Zn Extruded Alloy by High Content Mn-Alloying, Mater. Sci. Eng. A, 2019, 765, p 138203.

    Article  CAS  Google Scholar 

  21. Z.T. Li, X.G. Qiao, C. Xu, X.Q. Liu, S. Kamado, M.Y. Zheng, Enhanced Strength by Precipitate Modification in Wrought Mg–Al–Ca Alloy with Trace Mn Addition. J. Alloys Compd., https://doi.org/10.1016/j.jallcom.2020.154689 (2020)

  22. C. Xu, T. Nakata, G.H. Fan, X.W. Li, G.Z. Tang, and S. Kamado, Enhancing Strength and Creep Resistance of Mg–Gd–Y–Zn–Zr Alloy by Substituting Mn for Zr, J. Magnes. Alloys, 2019, 7(3), p 388–399.

    Article  CAS  Google Scholar 

  23. S.A. Khan, Y. Miyashita, Y. Mutoh, and Z.B. Sajuri, Influence of Mn Content on Mechanical Properties and Fatigue Behavior of Extruded Mg Alloys, Mater. Sci. Eng. A, 2006, 420(1–2), p 315–321.

    Article  Google Scholar 

  24. Y. Chai, B. Jiang, J. Song, B. Liu, G. Huang, D. Zhang, F. Pan, Effects of Zn and Ca Addition on Microstructure and Mechanical Properties of as-Extruded Mg-1.0Sn Alloy Sheet. Mater. Sci. Eng. A, 746, 82-93 (2019)

  25. Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, S.W. Xu, The Microstructure, Texture and Mechanical Properties of Extruded Mg–5.3Zn–0.2Ca–0.5Ce (wt.%) Alloy. Mater. Sci. Eng. A, 620, 164-171 (2015)

  26. Y. Chai, C. He, B. Jiang, J. Fu, Z. Jiang, Q. Yang, H. Sheng, G. Huang, D. Zhang, F. Pan, Influence of Minor Ce Additions on the Microstructure and Mechanical Properties of Mg-1.0Sn-0.6Ca Alloy. J. Mater. Sci. Technol., 37, 26-37 (2020)

  27. H. Pan, R. Kang, J. Li, H. Xie, Z. Zeng, Q. Huang, C. Yang, Y. Ren, and G. Qin, Mechanistic Investigation of a Low-Alloy Mg–Ca-Based Extrusion Alloy with High Strength-Ductility Synergy, Acta Mater., 2020, 186, p 278–290.

    Article  CAS  Google Scholar 

  28. X.-Y. Xu, Y.-F. Wang, H.-Y. Wang, T. Wang, M. Zha, Z.-M. Hua, C. Wang, and Q.-C. Jiang, Influences of Pre-Existing Mg17Al12 Particles on Static Recrystallization Behavior of Mg-Al-Zn Alloys at Different Annealing Temperatures, J. Alloys Compd., 2019, 787, p 1104–1109.

    Article  CAS  Google Scholar 

  29. H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han, Z.-Q. Liu, C. Li, X. Wu, H. Chen, C. He, L. Chai, Y. Wang, and J.-F. Nie, Development of Low-Alloyed and Rare-Earth-Free Magnesium Alloys Having Ultra-High Strength, Acta Mater., 2018, 149, p 350–363.

    Article  CAS  Google Scholar 

  30. H. Pan, C. Yang, Y. Yang, Y. Dai, D. Zhou, L. Chai, Q. Huang, Q. Yang, S. Liu, Y. Ren, and G. Qin, Ultra-Fine Grain Size and Exceptionally High Strength in Dilute Mg–Ca Alloys Achieved by Conventional One-Step Extrusion, Mater. Lett., 2019, 237, p 65–68.

    Article  CAS  Google Scholar 

  31. Z. Yang, M.F. Chisholm, G. Duscher, X. Ma, and S.J. Pennycook, Direct Observation of Dislocation Dissociation and Suzuki Segregation in a Mg–Zn–Y Alloy by Aberration-Corrected Scanning Transmission Electron Microscopy, Acta Mater., 2013, 61(1), p 350–359.

    Article  CAS  Google Scholar 

  32. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Texture Evolution during Static Recrystallization of Cold-Rolled Magnesium Alloys, Acta Mater., 2016, 105, p 479–494.

    Article  CAS  Google Scholar 

  33. M.Z. Bian, T.T. Sasaki, T. Nakata, Y. Yoshida, N. Kawabe, S. Kamado, and K. Hono, Bake-Hardenable Mg–Al–Zn–Mn–Ca Sheet Alloy Processed by Twin-Roll Casting, Acta Mater., 2018, 158, p 278–288.

    Article  CAS  Google Scholar 

  34. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans, 2005, 46(12), p 2817–2829.

    Article  CAS  Google Scholar 

  35. N.J. Petch, The cleavage strength of polycrystals, J Iron Steel Inst, 1953, 174, p 25–28.

    CAS  Google Scholar 

  36. D. Liu, Z.-Y. Liu, and E.-D. Wang, Evolution of Twins and Texture and its Effects on Mechanical Properties of AZ31 Magnesium Alloy Sheets under Different Rolling Process Parameters, Trans. Nonferrous Metals Soc. China, 2015, 25(11), p 3585–3594.

    Article  CAS  Google Scholar 

  37. C. Xu, M.Y. Zheng, K. Wu, E.D. Wang, G.H. Fan, S.W. Xu, S. Kamado, X.D. Liu, G.J. Wang, and X.Y. Lv, Influence of Rolling Temperature on the Microstructure and Mechanical Properties of Mg–Gd–Y–Zn–Zr Alloy Sheets, Mater. Sci. Eng. A, 2013, 559, p 615–622.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China, China (Nos. U1610253 and 51971053) and fund from Project of Promoting Talents in Liaoning province, China (No. XLYC1808038). H.C. Pan acknowledges the financial assistance from the Young Elite Scientists Sponsorship Program by CAST (2019-2021RNRC001, 2019-2021QNRC002), the State Key Laboratory of Solidification Processing in NPU, China (No. SKLSP201920), the Fundamental Research Fund for the Central University, China (No. N2002011), and Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science, China (No. 2019JH3/30100040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Cheng, R., Du, S. et al. Achieving High Strength in Micro-alloyed Mg-Al-Ca-Zn-Mn-Ce Alloy Sheet Processed by Single-Pass Large-Strain Rolling. J. of Materi Eng and Perform 29, 7115–7124 (2020). https://doi.org/10.1007/s11665-020-05188-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05188-9

Keywords

Navigation