Skip to main content
Log in

The Effect of Solution Heat Treatment Temperature on Phase Transformations, Microstructure and Properties of Ti-25Ta-xZr Alloys Used as a Biomaterial

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper describes a study of the effect of solution heat treatment temperature (500, 750 and 1000 °C) on the phase transformations, microstructure, microhardness and Young’s modulus of Ti-25Ta-xZr alloys, aimed at biomedical applications. The Ti-25Ta-xZr alloys ingots were melted in an arc furnace with five different compositions (x = 0, 10, 20 30 and 40 wt.%) in order to produce samples with α″, β + α″ and β phase. The results showed that both the microstructure and mechanical properties of the studied alloys can be tailored according to the temperatures used for solution in the Ti-25Ta-xZr system. Usually, higher solution heat treatment temperatures increase hardness due to the higher phase stabilization in single-phase alloys, while in the α″ + β alloys or predominantly β, hardness decreases due to the suppression of phase α″. However, the elastic modulus of the alloys decreases when solution heat treatment is performed at 1000 °C. In general, solution heat treatment performed at higher temperatures stabilizes more the β phase, optimizing the lower modulus of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.R. Luz, L.S. Santos, C.M. Lepienski, P.B. Kuroda, and N.K. Kuromoto, Characterization of the Morphology, Structure and Wettability of Phase Dependent Lamellar and Nanotube Oxides on Anodized Ti-10Nb Alloy, Appl. Surf. Sci., 2018, 448, p 30–40

    CAS  Google Scholar 

  2. M. Niinomi, M. Nakai, and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8(11), p 3888–3903

    CAS  Google Scholar 

  3. Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 2014, 7(3), p 1709–1800

    Google Scholar 

  4. M. Kaur and K. Singh, Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications, Mater. Sci. Eng. C, 2019, 102, p 844–862

    CAS  Google Scholar 

  5. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater. Sci., 2009, 54(3), p 397–425

    CAS  Google Scholar 

  6. J. Nagels, M. Stokdijk, and P.M. Rozing, Stress Shielding and Bone Resorption in Shoulder Arthroplasty, J. Shoulder Elb. Surg., 2003, 12(1), p 35–39

    Google Scholar 

  7. F.H. Froes, Titanium: Alloying, Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière, Eds., Elsevier, Amsterdam, 2001, p 9361–9364

    Google Scholar 

  8. K.K. Sankaran and R.S. Mishra, Eds., Chapter 5—Titanium Alloys, Metallurgy and Design of Alloys with Hierarchical Microstructures, Elsevier, Amsterdam, 2017, p 177–288

  9. I. Polmear, D. StJohn, J.-F. Nie, and M. Qian, Eds., 7—Titanium Alloys, Light Alloys, 5th ed., Butterworth-Heinemann, London, 2017, p 369–460

  10. S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, P. Qin, Y.H. Li, X.H. Zhang, and L.C. Zhang, Strengthening Mechanism and Corrosion Resistance of Beta-type Ti-Nb-Zr-Mn Alloys, Mater. Sci. Eng. C, 2020, 110, p 110728

    CAS  Google Scholar 

  11. H. Liu, J. Yang, X. Zhao, Y. Sheng, W. Li, C.-L. Chang, Q. Zhang, Z. Yu, and X. Wang, Microstructure, Mechanical Properties and Corrosion Behaviors of Biomedical Ti-Zr-Mo-xMn Alloys for Dental Application, Corros. Sci., 2019, 161, p 108195

    Google Scholar 

  12. S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, Y.H. Li, X.H. Zhang, and L.C. Zhang, Beta-type Ti-Nb-Zr-Cr Alloys with Large Plasticity and Significant Strain Hardening, Mater. Des., 2019, 181, p 108064

    CAS  Google Scholar 

  13. Y.L. Zhou, M. Niinomi, and T. Akahori, Effects of Ta Content on Young’s Modulus and Tensile Properties of Binary Ti-Ta Alloys for Biomedical Applications, Mater. Sci. Eng. A, 2004, 371(1), p 283–290

    Google Scholar 

  14. D. Mareci, R. Chelariu, D.-M. Gordin, G. Ungureanu, and T. Gloriant, Comparative Corrosion Study of Ti-Ta Alloys for Dental Applications, Acta Biomater., 2009, 5(9), p 3625–3639

    CAS  Google Scholar 

  15. C.Y. Wu, Y.H. Xin, X.F. Wang, and J.G. Lin, Effects of Ta Content on the Phase Stability and Elastic Properties of [beta] Ti-Ta Alloys from First-Principles Calculations, Solid State Sci., 2010, 12(12), p 2120–2124

    CAS  Google Scholar 

  16. D.R.N. Correa, F.B. Vicente, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, and C.R. Grandini, The Effect of the Solute on the Structure, Selected Mechanical Properties, and Biocompatibility of Ti-Zr System Alloys for Dental Applications, Mater. Sci. Eng. C-Mater. Biol. Appl., 2014, 34, p 354–359

    CAS  Google Scholar 

  17. M.-K. Han, M.-J. Hwang, M.-S. Yang, H.-S. Yang, H.-J. Song, and Y.-J. Park, Effect of Zirconium Content on the Microstructure, Physical Properties and Corrosion Behavior of Ti Alloys, Mater. Sci. Eng. A, 2014, 616, p 268–274

    CAS  Google Scholar 

  18. J.M. Cordeiro, T. Beline, A.L.R. Ribeiro, E.C. Rangel, N.C. da Cruz, R. Landers, L.P. Faverani, L.G. Vaz, L.M.G. Fais, F.B. Vicente, C.R. Grandini, M.T. Mathew, C. Sukotjo, and V.A.R. Barão, Development of Binary and Ternary Titanium Alloys for Dental Implants, Dent. Mater., 2017, 33(11), p 1244–1257

    CAS  Google Scholar 

  19. X. Liu, S. Chen, J.K.H. Tsoi, and J.P. Matinlinna, Binary Titanium Alloys as Dental Implant Materials—A Review, Regen. Biomater., 2017, 4(5), p 315–323

    CAS  Google Scholar 

  20. Y.-J. Park, Y.-H. Song, J.-H. An, H.-J. Song, and K.J. Anusavice, Cytocompatibility of Pure Metals and Experimental Binary Titanium Alloys for Implant Materials, J. Dent., 2013, 41(12), p 1251–1258

    CAS  Google Scholar 

  21. J. Markhoff, M. Krogull, C. Schulze, C. Rotsch, S. Hunger, and R. Bader, Biocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts Macrophages Mater., 2017, 10(1), p 52

    Google Scholar 

  22. Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui, and H. Toda, Corrosion Resistance and Biocompatibility of Ti-Ta Alloys for Biomedical Applications, Mater. Sci. Eng. A, 2005, 398(1–2), p 28–36

    Google Scholar 

  23. H.M. Grandin, S. Berner, and M. Dard, A Review of Titanium Zirconium (TiZr) Alloys for Use in Endosseous Dental Implants, Materials, 2012, 5(8), p 1348

    CAS  Google Scholar 

  24. J.M. Cordeiro, L.P. Faverani, C.R. Grandini, E.C. Rangel, N.C. da Cruz, F.H. Nociti Junior, A.B. Almeida, F.B. Vicente, B.R.G. Morais, V.A.R. Barão, and W.G. Assunção, Characterization of chemically treated Ti-Zr system alloys for dental implant application, Mater. Sci. Eng. C, 2018, 92, p 849–861

    CAS  Google Scholar 

  25. D.R.N. Correa, F.B. Vicente, R.O. Araújo, M.L. Lourenço, P.A.B. Kuroda, M.A.R. Buzalaf, and C.R. Grandini, Effect of the Substitutional Elements on the Microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo Systems Alloys, J. Mater. Res. Technol., 2015, 4(2), p 180–185

    CAS  Google Scholar 

  26. Y.L. Zhou, M. Niinomi, and T. Akahori, Decomposition of Martensite α″ During Aging Treatments and Resulting Mechanical Properties of Ti-Ta Alloys, Mater. Sci. Eng. A, 2004, 384(1), p 92–101

    Google Scholar 

  27. J.R.S. Martins and C.R. Grandini, The Influence of Heat Treatment on the Structure and Microstructure of Ti-15Mo-xNb System Alloys for Biomedical Applications, Mater. Sci. Forum, 2014, 783–786, p 1255–1260

    Google Scholar 

  28. F.F. Cardoso, P.L. Ferrandini, E.S. Lopes, A. Cremasco, and R. Caram, Ti-Mo Alloys Employed as Biomaterials: Effects of Composition and Aging Heat Treatment on Microstructure and Mechanical Behavior, J. Mech. Behav. Biomed. Mater., 2014, 32, p 31–38

    CAS  Google Scholar 

  29. K. Wang and M. Li, Effects of Heat Treatment and Hot Deformation on the Secondary α Phase Evolution of TC8 Titanium Alloy, Mater. Sci. Eng. A, 2014, 613, p 209–216

    CAS  Google Scholar 

  30. D.R.N. Correa, P.A.B. Kuroda, M.L. Lourenço, and C.R. Grandini, Effect of Heat Treatment in the Structure and Microstructure of Ti-15Zr-XMo Alloys, Defect Diffus. Forum, 2015, 365, p 305–310

    Google Scholar 

  31. C. Li, J. Chen, Y.J. Ren, W. Li, J.J. He, and J.H. Chen, Effect of Solution Heat Treatment on the Stress-Induced Martensite Transformation in Two New Titanium Alloys, J. Alloy. Compd., 2015, 641, p 192–200

    CAS  Google Scholar 

  32. C.C. Xavier, D.R.N. Correa, C.R. Grandini, and L.A. Rocha, Low Temperature Heat Treatments on Ti-15Zr-xMo Alloys, J. Alloy. Compd., 2017, 727, p 246–253

    CAS  Google Scholar 

  33. R.V. Chernozem, M.A. Surmeneva, V.P. Ignatov, O.O. Peltek, A.A. Goncharenko, A.R. Muslimov, A.S. Timin, A.I. Tyurin, Y.F. Ivanov, C.R. Grandini, and R.A. Surmenev, Comprehensive Characterization of Titania Nanotubes Fabricated on Ti-Nb Alloys: Surface Topography, Structure, Physicomechanical Behavior, and a Cell Culture Assay, ACS Biomater. Sci. Eng., 2020, 6(3), p 1487–1499

    CAS  Google Scholar 

  34. P.A.B. Kuroda, F. de Freitas Quadros, K.D.S.J. Sousa, T.A.G. Donato, R.O. de Araújo, and C.R. Grandini, Preparation, Structural, Microstructural, Mechanical and Cytotoxic Characterization of As-Cast Ti-25Ta-Zr Alloys, J. Mater. Sci.: Mater. Med., 2020, 31(2), p 19

    CAS  Google Scholar 

  35. F.D.F. Quadros, P.A.B. Kuroda, K.D.S.J. Sousa, T.A.G. Donato, and C.R. Grandini, Preparation Structural and Microstructural Characterization of Ti-25Ta-10Zr Alloy for Biomedical Applications, J. Mater. Res. Technol., 2019, 8(5), p 4108–4114

    CAS  Google Scholar 

  36. P.A.B. Kuroda, F.D.F. Quadros, R.O.D. Araújo, C.R.M. Afonso, and C.R. Grandini, Effect of Thermomechanical Treatments on the Phases, Microstructure, Microhardness and Young’s Modulus of Ti-25Ta-Zr Alloys, Materials, 2019, 12(19), p 3210

    CAS  Google Scholar 

  37. P.A.B. Kuroda, M.L. Lourenço, D.R.N. Correa, and C.R. Grandini, Thermomechanical treatments influence on the phase composition, microstructure, and selected mechanical properties of Ti-20Zr-Mo alloys system for biomedical applications, J. Alloys Compd., 2019, 812, p 152108

    Google Scholar 

  38. ASTM, “E92-82—Standard Test Method for Vickers Hardness of Metallic Materials”, E92-82, ASTM International. 2003

  39. ASTM, “E1876–01—Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration”, E1876–01, ASTM International, 2002

  40. M. Peters, J. Hemptenmacher, J. Kumpfert, and C. Leyens, Structure and Properties of Titanium and Titanium Alloys, Titanium and Titanium Alloys. Wiley, New York, 2005, p 1–36

    Google Scholar 

  41. D.R.N. Correa, P.A.B. Kuroda, M.L. Lourenço, M.A.R. Buzalaf, M.E. Mendoza, B.S. Archanjo, C.A. Achete, L.A. Rocha, and C.R. Grandini, Microstructure and Selected Mechanical Properties of Aged Ti-15Zr-Based Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2018, 91, p 762–771

    CAS  Google Scholar 

  42. C.C. Xavier, D.R.N. Correa, C.R. Grandini, and L.A. Rocha, Low Temperature Heat Treatments on Ti-15Zr-xMo Alloys, J. Alloys Compd., 2017, 727(Supplement C), p 246–253

    CAS  Google Scholar 

  43. Y.-L. Zhou and M. Niinomi, Ti-25Ta Alloy with the Best Mechanical Compatibility in Ti-Ta Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2009, 29(3), p 1061–1065

    CAS  Google Scholar 

  44. Y.-L. Zhou and M. Niinomi, Microstructures and Mechanical Properties of Ti-50 mass% Ta Alloy for Biomedical Applications, J. Alloy. Compd., 2008, 466(1), p 535–542

    CAS  Google Scholar 

  45. W. Qu, X. Sun, B. Yuan, C. Xiong, F. Zhang, Y. Li, and B. Sun, Microstructures and Phase Transformations of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) Shape Memory Alloys, Mater. Charact., 2016, 122, p 1–5

    CAS  Google Scholar 

  46. W.-F. Ho, Effect of Omega Phase on Mechanical Properties of Ti-Mo Alloys for Biomedical Applications, J. Med. Biol. Eng., 2008, 28(1), p 47–51

    Google Scholar 

  47. G.K. Dey, R. Tewari, S. Banerjee, G. Jyoti, S.C. Gupta, K.D. Joshi, and S.K. Sikka, Formation of a Shock Deformation Induced [Omega] Phase in Zr 20 Nb Alloy, Acta Mater., 2004, 52(18), p 5243–5254

    CAS  Google Scholar 

  48. E. Sukedai, H. Matsumoto, and H. Hashimoto, Electron Microscopy Study on Mo Content Dependence of β to ω Phase Transformation Due to Cooling in Ti-Mo Alloys, Microscopy, 2002, 51(suppl_1), p S143–S147

    Google Scholar 

  49. T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada, Beta Ti Alloys with Low Young’s Modulus, Mater. Trans., 2004, 45(8), p 2776–2779

    CAS  Google Scholar 

  50. M. Niinomi, Low modulus titanium alloys for inhibiting bone atrophy, Biomaterials Science and Engineering, R. Pignatello, Ed., Intechopen, London, 2011, p 249–268

    Google Scholar 

  51. D.R.N. Correa, P.A.B. Kuroda, M.L. Lourenco, M.A.R. Buzalaf, and C.R. Grandini, Adjustment of the Microstructure and Selected Mechanical Properties of Biomedical Ti-15Zr-Mo Alloys Through Oxygen Doping, J. Alloy. Compd., 2019, 775, p 158–167

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Oscar Balancin and Rover Belo (UFSCar) for the use of hot-rolling equipment. The authors are grateful to the Brazilian Nanotechnology National Laboratory—LNNano, for the use of its x-ray diffractometer and LCE/DEMa (Structural Characterization Laboratory) of UFSCar for the TEM analysis using FEI Tecnai G2 F20 microscope. This study was supported by the following Brazilian funding agencies, FAPESP (Grant #2015/09.480-0) and CNPq (Grants #307.279/2013-8, #137.221/2015-0, #157.509/2015-0 and #400.705/2015-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Roberto Grandini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuroda, P.A.B., Quadros, F.F., Afonso, C.R.M. et al. The Effect of Solution Heat Treatment Temperature on Phase Transformations, Microstructure and Properties of Ti-25Ta-xZr Alloys Used as a Biomaterial. J. of Materi Eng and Perform 29, 2410–2417 (2020). https://doi.org/10.1007/s11665-020-04770-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04770-5

Keywords

Navigation