Skip to main content
Log in

Mechanical Behavior and Microstructure of AA6061-T6 Joints Made by Friction Stir Vibration Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The friction stir vibration welding (FSVW) method has been proposed as a modified version of the friction stir welding (FSW) method. In the current research, the effect of the FSVW variables on the microstructure and the mechanical properties of the joint made by this welding process was analyzed. In FSVW, the workpiece is vibrated normal to tool traverse direction while FSW is carried out. AA6061-T6 specimens were joined by FSVW as well as FSW, and the obtained joints were compared. The microstructures of the welds were analyzed using metallography techniques. SEM and EBSD were also applied to study the microstructure. The results showed that grain size reduced and hardness increased as the FSVW technique was employed instead of FSW. The results also indicated that the strength and hardness of joints, made by FSVW, increased as vibration frequency increased. It is believed that workpiece vibration, in FSVW, increases the material strain and correspondingly, enhances the dislocation density. More intensified role of dynamic recrystallization in FSVW, compared to FSW, leads to the development of finer grains in the stir zone. It was also concluded that high thermal energy during FSW and FSVW might deteriorate the mechanical properties of the joint and low thermal energy also leads to an unfair joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Abbasi, B. Bagheri, and R. Keivani, Thermal Analysis of Friction Stir Welding Process and Investigation into Affective Parameters Using Simulation, J. Mech. Sci. Technol., 2015, 29(2), p 861–866

    Article  Google Scholar 

  2. M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian, and B. Bagheri, Characterization of Microstructure and Mechanical Properties of Dissimilar Steel- Copper joint Made by FSW, J. Mech. Sci. Technol., 2017, 31(3), p 1135–1142

    Article  Google Scholar 

  3. H. Zhang, M. Wang, W. Zhou, X. Zhang, Z. Zhu, T. Yu, and G. Yang, Microstructureproperty Characteristics of a Novel Non-Weld-Thinning Friction Stir Welding Process of Aluminum Alloys, Mater. Des., 2015, 86, p 379–387

    Article  CAS  Google Scholar 

  4. O. Barooni, M. Givi, M. Abbasi, and B. Bagheri, New Method to Improve the Microstructure and Mechanical Properties of joint Obtained using FSW, In. J. Adv. Manufac. Technol., 2017, 93(9–12), p 4371–4378

    Article  Google Scholar 

  5. R. Keivani, B. Bagheri, F. Sharifi, M. Ketabchi, and M. Abbasi, Effects of Pin Angle and Preheating on Temperature Distribution during Friction Stir Welding Operation, Trans. Nonferrous Met. Soc. China, 2013, 23(9), p 2708–2713

    Article  CAS  Google Scholar 

  6. G. Cam and S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-Alloys, J. Mater. Eng. Perform., 2014, 23, p 1936–1953

    Article  CAS  Google Scholar 

  7. R.I. Rodriguez, J.B. Jordon, P.G. Allison, T. Rushing, and L. Garcia, Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding of 6061-to-7050 Aluminum Alloys, Mater. Des., 2015, 83, p 60–65

    Article  CAS  Google Scholar 

  8. S. Rajakumar, C. Muralidharan, and V. Balbasubramanian, Predicting Tensile Strength, Hardness and Corrosion Rate of Friction Stir Welded AA6061-T6 Aluminum Alloy Joints, Mater. Des., 2011, 32, p 2878–2890

    Article  CAS  Google Scholar 

  9. A. Salemi Golezani, R. Vatankhah Barenji, A. Heidarzedh, and H. Pouraliakbar, Elucidating of Tool Rotational Speed in Friction Stir Welding of 7020-T6 Aluminum Alloy, Int. J. Adv. Manufac. Technol, 2015, 81, p 1155–1164

    Article  Google Scholar 

  10. A. Heidarzade, H. Khodaverdizadeh, A. Mahmoudi, and E. Nazari, Tensile Behaviour of Friction Stir Welded AA 6061-T4 Aluminium Alloy Joints, Mater. Des., 2012, 37, p 166–173

    Article  Google Scholar 

  11. B. Wang, B. Lei, J. Zhu, Q. Feng, L. Wang, and D. Wu, EBSD Study on Microstructure and Texture of Friction Stir Welded AA5052-O and AA6061-T6 Dissimilar Joint, Mater. Des., 2015, 87, p 593–599

    Article  CAS  Google Scholar 

  12. S.K. Park, S.T. Hong, J.H. Park, K.Y. Park, Y.J. Kwon, and H.J. Son, Effect of Material Locations on Properties of Friction Stir Welding Joints of Dissimilar Aluminium Alloys, Sci. Technol. Weld Join., 2010, 15, p 331–336

    Article  CAS  Google Scholar 

  13. I. Vysotskiy, S. Malopheyev, S. Mironov, and R. Kaibyshev, Pre-Strain Rolling as an Effective Tool for Suppression of Abnormal Grain Growth in Friction-Stir Welded 6061 Aluminum Alloy, Mater. Sci. Eng., A, 2018, 733, p 39–42

    Article  CAS  Google Scholar 

  14. S. Malopheyev, I. Vysotskiy, V. Kulitskiy, S. Mironov, and R. Kaibyshev, Optimization of Processing-Microstructure-Properties Relationship in Friction-Stir Welded 6061-T6 Aluminum Alloy, Mater. Sci. Eng., A, 2016, 662, p 136–143

    Article  CAS  Google Scholar 

  15. X.C. Liu, C.S. Wu, and G.K. Padhy, Improved Weld Macrosection, Microstructure and Mechanical Properties of 2024Al-T4 Butt Joints in Ultrasonic Vibration Enhanced Friction Stir Welding, Sci Technol Weld Join., 2015, 20, p 345–352

    Article  CAS  Google Scholar 

  16. S. Amini and M.R. Amiri, Study of Ultrasonic Vibrations’ Effect on Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2014, 73, p 127–135

    Article  Google Scholar 

  17. M. Ahmadnia, A. Seidanloo, R. Teimouri, Y. Rostamiyan, and Kh.Gh. Titrashi, Determining Influence of Ultrasonic-Assisted Friction Stir Welding Parameters on Mechanical and Tribological Properties of AA6061 Joints, Int. J. Adv. Manuf. Technol., 2015, https://doi.org/10.1007/s00170-015-6784-0

    Article  Google Scholar 

  18. Zh Liu, Sh Ji, and X. Meng, Joining of Magnesium and Aluminum Alloys via Ultrasonic Assisted Friction Stir Welding at Low Temperature, Int. J. Adv. Manuf. Technol., 2018, 97, p 4127–4136

    Article  Google Scholar 

  19. M. Rahmi and M. Abbasi, Friction Stir Vibration Welding Process: Modified Version of Friction Stir Welding Process, Int. J. Adv. Manuf. Technol., 2017, 90, p 141–151

    Article  Google Scholar 

  20. ASTM E3–11, Standard Guide for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, PA, 2011

    Google Scholar 

  21. ASTM-E112–13, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2011

    Google Scholar 

  22. ASTM-E8, Standard Test Methods of Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2011

    Google Scholar 

  23. A. Heidarzadeh, T. Saeid, and V. Klemm, Microstructure, Texture, and Mechanical Properties of Friction Stir Welded Commercial Brass Alloy, Mater. Charact., 2016, 119, p 84–91

    Article  CAS  Google Scholar 

  24. A. Heidarzadeh, H. Pouraliakbar, S. Mahdavi, and M.R. Jandaghi, Ceramic Nanoparticles Addition in Pure Copper Plate: FSP Approach, Microstructure Evolution and Texture Study Using EBSD, Ceramic Int. J., 2018, 44, p 3128–3133

    Article  CAS  Google Scholar 

  25. A. Amirafshar and H. Pouraliakbar, Effect of Tool Pin Design on the Microstructural Evolutions and Tribological Characteristics of Friction Stir Processed Structural Steel, Measure. J., 2015, 68, p 111–116

    Google Scholar 

  26. Y.S. Sato, M. Urata, and H. Kokawa, Parameters Controlling Microstructure and Hardness During Friction Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063, Metal. Mater. Trans. A., 2002, 33, p 625–635

    Article  Google Scholar 

  27. B. Bagheri, A.A.M. Rizi, M. Abbasi, and M. Givi, Friction Stir Spot Vibration Welding: Improving the Microstructure and Mechanical Properties of Al5083, Joint Metal. Micro. Analyse., 2019, 8(5), p 713–725

    CAS  Google Scholar 

  28. M. Abbasi, M. Givi, and A. Ramazani, Friction Stir Vibration Processing: A New Method to Improve the Microstructure and Mechanical Properties of Al5052/SiC Surface Nano-Composite Layer, Int. J. Adv. Manuf. Technol., 2019, 100, p 1463–1473

    Article  Google Scholar 

  29. C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Script. Mater, 2004, 51, p 509–514

    Article  CAS  Google Scholar 

  30. S. Fouladi and M. Abbasi, The Effect of Friction Stir Vibration Welding Process on Characteristics of SiO2 Incorporated Joint, J. Mater. Process. Technol., 2017, 243, p 23–30

    Article  CAS  Google Scholar 

  31. B. Bagheri, M. Abbasi, and M. Dadaei, Effect of Water Cooling and Vibration on the Performances of Friction Stir-Welded AA5083 Aluminum Joint, J. Metall. Micro. Analys., 2020, https://doi.org/10.1007/s13632-019-00606-4

    Article  Google Scholar 

  32. J.Q. Su, T.W. Nelson, and C.J. Sterling, Microstructure Evolution During FSW/FSP of High Strength Aluminum Alloys, Mater. Sci. Eng., A, 2005, 405, p 277–286

    Article  Google Scholar 

  33. B. Bagheri, M. Abbasi, A. Abdollahzadeh, and H. Omidvar, Advanced Approach to Modify Friction Stir Spot Welding Process, Metal. Mater. In. J., 2019, https://doi.org/10.1007/s12540-019-00416-x

    Article  Google Scholar 

  34. B. Bagheri, A.A.M. Rizi, M. Abbasi, and M. Givi, Friction Stir Spot Vibration Welding: Improving the Microstructure and Mechanical Properties of Al5083 Joint, Metall. Micro. Analys., 2019, 8(5), p 713–725. https://doi.org/10.1007/s13632-019-00563-y

    Article  CAS  Google Scholar 

  35. M. Abbasi, M. Givi, and B. Bagheri, Application of Vibration to Enhance Efficiency of Friction Stir Processing, Trans. Nonferrous Met. Soc. China, 2019, 29, p 1393–1400. https://doi.org/10.1016/S1003-6326(19)65046-6

    Article  CAS  Google Scholar 

  36. V. Uthaisangsuk, Microstructure Based Formability Modeling of Multiphase Steels. Ph. D. Thesis, IEHK, RWTH- Aachen, 2009.

  37. D. Hull and D.J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Britain, 2011, p 87–95

    Google Scholar 

  38. G.E. Dieter and D. Bacon, Mechanical and Metallurgy, McGraw-Hill, London, 1988, p 184–193

    Google Scholar 

  39. B. Bagheri and M. Abbasi, Development of AZ91/SiC Surface Composite by FSP: Effect of Vibration and Process Parameters on Microstructure and Mechanical Characteristics, Adv. Manuf., 2019, https://doi.org/10.1007/s40436-019-00288-9

    Article  Google Scholar 

  40. Y.Z. Estrin, P.A. Zabrodin, I.S. Braude, T.V. Grigorova, N.V. Iasev, V.V. Pustovalov, V.S. Fomenko, and S.E. Shumilin, Low Temperature Plastic Deformation of AZ31 Magnesium Alloy with Different Microstructures, Low. Tempe. Phys., 2010, 36, p 1100–1112

    Article  CAS  Google Scholar 

  41. M. Naderi, M. Abbasi, and A. Saeed-Akbari, Enhanced Mechanical Properties of a Hot-Stamped Advanced High-Strength Steel Via Tempering Treatment, Metall. Mater. Trans. A, 2013, 44, p 1852–1861

    Article  CAS  Google Scholar 

  42. S. Kumar, Ultrasonic Assisted Friction Stir Processing of 6063 Aluminum Alloy, Arch. Civ. Mech. Eng., 2016, 16, p 473–484

    Article  Google Scholar 

  43. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Reports, 2005, 50(12), p 1–78

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Kashan and Amirkabir University of Technology (AUT) for partially providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Dadaei.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, B., Abbasi, M. & Dadaei, M. Mechanical Behavior and Microstructure of AA6061-T6 Joints Made by Friction Stir Vibration Welding. J. of Materi Eng and Perform 29, 1165–1175 (2020). https://doi.org/10.1007/s11665-020-04639-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04639-7

Keywords

Navigation