Skip to main content

Advertisement

Log in

In Situ Synthesis of 3D Interconnected Graphene-Reinforced Copper Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Graphene shows great potential in composite applications, but the performance of traditional graphene-metal composites is poorer than desired due to the uneven dispersion of graphene in the matrix. This study provides an effective method to grow high-quality graphene on the surface of 3D porous copper using a combination of chemical vapor deposition and spark plasma sintering to obtain a dense 3D-interconnected graphene/Cu composite. Transmission electron microscopy and scanning electron microscopy showed that graphene-coated copper and Raman analysis showed high-quality graphene. The tensile strength of the 3D graphene/Cu composite was 425 MPa, which is ~ 25% higher than that of pure Cu, and the coefficient of friction (0.33) is about 45% lower than that of pure Cu (0.58). The formation of high-quality 3D graphene interconnects in the Cu matrix results in a higher mechanical strength, better friction properties and superior electrical and thermal conductivity of the composite compared to those of pure Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Park and R.S. Ruoff, Chemical Methods for the Production of Graphenes, Nat. Nanotechnol., 2009, 4, p 217–224

    Article  Google Scholar 

  2. A.B. Alexander, G. Suchismita, Z.B. Wen, and C. Irene, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907

    Article  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, and D. Jiang, Electric Field Effect in Atomically Thin Carbon Films, Science, 2004, 306, p 666–669

    Article  Google Scholar 

  4. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321, p 385–388

    Article  Google Scholar 

  5. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Graphene-Based Composite Materials, Nature, 2006, 442, p 282–286

    Article  Google Scholar 

  6. Z. Yang, L. Wang, Z. Shi, M. Wang, Y. Cui, B. Wei, S. Xu, Y. Zhu, and W. Fei, Preparation Mechanism of Hierarchical Layered Structure of Graphene/Copper Composite with Ultrahigh Tensile Strength, Carbon, 2018, 127, p 329–339

    Article  Google Scholar 

  7. A. Sakhaee-Pour, Elastic Properties of Single-Layered Graphene Sheet, Solid State Commun., 2009, 149, p 91–95

    Article  Google Scholar 

  8. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett., 2008, 100, p 016602

    Article  Google Scholar 

  9. X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang, Mechanical Properties and Thermal Conductivity of Graphene Reinforced Copper Matrix Composites, Powder Technol., 2016, 301, p 601–607

    Article  Google Scholar 

  10. R. Alfonso, J. Xiao, H. John, N. Daniel, and S. Hyungb, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett., 2009, 9, p 30–35

    Article  Google Scholar 

  11. Y. Tang, X. Yang, R. Wang, and M. Li, Enhancement of the Mechanical Properties of Graphene-Copper Composites with Graphene-Nickel Hybrids, Mater. Sci. Eng., A, 2014, 599, p 247–254

    Article  Google Scholar 

  12. G. Shao, P. Liu, K. Zhang, W. Li, X. Chen, and F. Ma, Mechanical Properties of Graphene Nanoplates Reinforced Copper Matrix Composites Prepared by Electrostatic Self-Assembly and Spark Plasma Sintering, Mater. Sci. Eng., A, 2019, 739, p 329–334

    Article  Google Scholar 

  13. Y. Chen and J. Zhan, Physical Development and Cognitive Performance in a Monozygotic Twins for Biliary Atresia: Report of a Case and Literature Reviewing, J. Pediatr. Surg. Case Rep., 2016, 11, p 9–13

    Article  Google Scholar 

  14. Y. He, S. Wang, H. Luo, and C. Wang, Ag-rGO Content Dependence of the Mechanical, Conductive and Anti-Corrosion Properties of Copper Matrix Composites, Mater. Res. Express, 2018, 5, p 096523

    Article  Google Scholar 

  15. H. Luo, Y. Sui, J. Qi, Q. Meng, F. Wei, and Y. He, Mechanical Enhancement of Copper Matrix Composites with Homogeneously Dispersed Graphene Modified by Silver Nanoparticles, J. Alloy. Compd., 2017, 729, p 293–302

    Article  Google Scholar 

  16. H. Luo, Y. Sui, J. Qi, Q. Meng, F. Wei, and Y. He, Copper Matrix Composites Enhanced by Silver/Reduced Graphene Oxide Hybrids, Mater. Lett., 2017, 196, p 354–357

    Article  Google Scholar 

  17. K. Chu and C. Jia, Enhanced Strength in Bulk Graphene-Copper Composites, Phys. Status Solidi A, 2014, 211, p 184–190

    Article  Google Scholar 

  18. H. Rho, S. Lee, S. Bae, T.-W. Kim, D. Su Lee, H. Jung Lee, J. Yeon Hwang, T. Jeong, S. Kim, J.-S. Ha, and S. Hyun Lee, Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance, Sci. Rep., 2015, 5, p 1–7

    Article  Google Scholar 

  19. L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus, Raman Spectroscopy in Graphene, Phys. Rep., 2009, 473, p 51–87

    Article  Google Scholar 

  20. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97, p 187401

    Article  Google Scholar 

  21. S. Bhaviripudi, X. Jia, M.S. Dresselhaus, and J. Kong, Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst, Nano Lett., 2010, 10, p 4128–4133

    Article  Google Scholar 

  22. Y. Chen, X. Zhang, E. Liu, C. He, C. Shi, J. Li, P. Nash, and N. Zhao, Fabrication of In Situ Grown Graphene Reinforced Cu Matrix Composites, Sci. Rep., 2016, 6, p 1–9

    Article  Google Scholar 

  23. A. Pendashteh, M.F. Mousavi, and M.S. Rahmanifar, Fabrication of Anchored Copper Oxide Nanoparticles on Graphene Oxide Nanosheets Via an Electrostatic Coprecipitation and Its Application as Supercapacitor, Electrochim. Acta, 2013, 88, p 347–357

    Article  Google Scholar 

  24. Y.J. Mai, X.L. Wang, J.Y. Xiang, Y.Q. Qiao, D. Zhang, C.D. Gu, and J.P. Tu, CuO/Graphene Composite as Anode Materials for Lithium-Ion Batteries, Electrochim. Acta, 2011, 56, p 2306–2311

    Article  Google Scholar 

  25. T.J. Stuart and G.N. Ralph, Determining Hybridization Differences for Amorphous Carbon from the XPS C1s Envelope, Appl. Surf. Sci., 1995, 90, p 195–203

    Article  Google Scholar 

  26. A. Siokou, F. Ravani, S. Karakalos, O. Frank, M. Kalbac, and C. Galiotis, Surface Refinement and Electronic Properties of Graphene Layers Grown on Copper Substrate: an XPS, UPS and EELS study, Appl. Surf. Sci., 2011, 257, p 9785–9790

    Article  Google Scholar 

  27. S.F. Wang, G.Z. Sun, L.M. Fang, L. Lei, X. Xiang, and X.T. Zu, A Comparative Study of ZnAl2O4 Nanoparticles Synthesized from Different Aluminum Salts for Use as Fluorescence Materials, Sci. Rep., 2015, 5, p 12849

    Article  Google Scholar 

  28. A. Pulido, P. Concepción, M. Boronat, C. Botas, P. Alvarez, R. Menendez, and A. Corma, Reconstruction of the Carbon sp2 Network in Graphene Oxide by Low-Temperature Reaction with CO, J. Mater. Chem., 2012, 22, p 51–56

    Article  Google Scholar 

  29. X. Gao, N. Yokota, H. Oda, S. Tanaka, K. Hokamoto, and P. Chen, One Step Preparation of Fe-FeO-Graphene Nanocomposite through Pulsed Wire Discharge, Crystals, 2018, 8, p 104

    Article  Google Scholar 

  30. J. Zhou, H. Song, L. Ma, and X. Chen, Magnetite/Graphene Nanosheet Composites: Interfacial Interaction and Its Impact on the Durable High-Rate Performance in Lithium-Ion Batteries, RSC Adv., 2011, 1, p 782

    Article  Google Scholar 

  31. J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong, and S. Jeon, Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process, Adv. Mater., 2013, 25, p 6724–6729

    Article  Google Scholar 

  32. Y. Chen, X. Zhang, E. Liu, C. He, Y. Han, Q. Li, P. Nash, and N. Zhao, Fabrication of Three-Dimensional Graphene/Cu Composite by In Situ CVD and Its Strengthening Mechanism, J. Alloy. Compd., 2016, 688, p 69–76

    Article  Google Scholar 

  33. X. Li, Y. Zhao, W. Wu, J. Chen, G. Chu, and H. Zou, Synthesis and Characterizations of Graphene-Copper Nanocomposites and their Antifriction Application, J. Ind. Eng. Chem., 2014, 20, p 2043–2049

    Article  Google Scholar 

  34. A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Graphene Reinforced Metal and Ceramic Matrix Composites: A Review, Int. Mater. Rev., 2016, 62, p 241–302

    Article  Google Scholar 

  35. X. Zhang, W. Yang, J. Zhang, X. Ge, X. Liu, and Y. Zhan, Multiscale Graphene/Carbon Fiber Reinforced Copper Matrix Hybrid Composites: Microstructure and Properties, Mater. Sci. Eng., A, 2019, 743, p 512–519

    Article  Google Scholar 

  36. H. Yue, L. Yao, X. Gao, S. Zhang, E. Guo, H. Zhang, X. Lin, and B. Wang, Effect of Ball-Milling and Graphene Contents on the Mechanical Properties and Fracture Mechanisms of Graphene Nanosheets Reinforced Copper Matrix Composites, J. Alloy. Compd., 2017, 691, p 755–762

    Article  Google Scholar 

  37. Z.Z. Dandan Zhang, Strengthening Effect of Graphene Derivatives in Copper Matrix Composites, J. Alloy. Compd., 2016, 654, p 226–233

    Article  Google Scholar 

  38. K. Chu, J. Wang, Y. Liu, and Z.-R. Gen, Graphene Defect Engineering for Optimizing the Interface and Mechanical Properties of Graphene/Copper Composites, Carbon, 2018, 140, p 112–123

    Article  Google Scholar 

  39. K. Chu, Q. Wu, C. Jia, X. Liang, J. Nie, W. Tian, G. Gai, and H. Guo, Fabrication and Effective Thermal Conductivity of Multi-Walled Carbon Nanotubes Reinforced Cu Matrix Composites for Heat Sink Applications, Compos. Sci. Technol., 2010, 70, p 298–304

    Article  Google Scholar 

  40. J.N. Wei, Z.B. Li, and F.S. Han, Thermal Mismatch Dislocations in Macroscopic Graphite Particle-Reinforced Metal Matrix Composites Studied by Internal Friction, Phys. Status Solidi A, 2002, 191, p 125–136

    Article  Google Scholar 

  41. J. Li, H. Zhang, Y. Zhang, Z. Che, and X. Wang, Microstructure and Thermal Conductivity of Cu/Diamond Composites with Ti-Coated Diamond Particles Produced by Gas Pressure Infiltration, J. Alloy. Compd., 2015, 647, p 941–946

    Article  Google Scholar 

  42. W. Yang, L. Zhou, K. Peng, J. Zhu, and L. Wan, Effect of Tungsten Addition on Thermal Conductivity of Graphite/Copper Composites, Compos. B Eng., 2013, 55, p 1–4

    Article  Google Scholar 

  43. J. Kováčik, Š. Emmer, and J. Bielek, Thermal Conductivity of Cu-Graphite Composites, Int. J. Therm. Sci., 2015, 90, p 298–302

    Article  Google Scholar 

  44. H. Wahab, R. Haverkamp, J.H. Kim, J.M. Cadogan, H.C. Mertins, S.H. Choi, and H. Timmers, The Structural Response of Graphene on Copper to Surface- and Interfacial-Oxygen, Carbon, 2016, 110, p 414–425

    Article  Google Scholar 

  45. F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, and Q. Huang, Effects of Graphene Content on the Microstructure and Properties of Copper Matrix Composites, Carbon, 2016, 96, p 836–842

    Article  Google Scholar 

  46. K. Chu, X.-H. Wang, F. Wang, Y.-B. Li, D.-J. Huang, H. Liu, W.-L. Ma, F.-X. Liu, and H. Zhang, Largely Enhanced Thermal Conductivity of Graphene/Copper Composites with Highly Aligned Graphene Network, Carbon, 2018, 127, p 102–112

    Article  Google Scholar 

  47. C.-C. Hsieh and W.-R. Liu, Synthesis and Characterization of Nitrogen-Doped Graphene Nanosheets/Copper Composite Film for Thermal Dissipation, Carbon, 2017, 118, p 1–7

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51201107) and the Shanghai Municipal Science and Technology Commission Basic Research Project (10JC1411800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, X., Li, W. et al. In Situ Synthesis of 3D Interconnected Graphene-Reinforced Copper Composites. J. of Materi Eng and Perform 28, 4265–4274 (2019). https://doi.org/10.1007/s11665-019-04196-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04196-8

Keywords

Navigation