Skip to main content
Log in

The Effects of Sodium Tungstate on the Characteristics of Microarc Oxidation Coating on Ti6Al4V

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microarc oxidized coatings on Ti6Al4V alloy are produced in a basic Na2SiO3-(NaPO3)6-NaAlO2 electrolyte with different concentrations of sodium tungstate. The effects of sodium tungstate on the characteristics of the coating are investigated through current–time response, microstructure, composition, hardness, bonding strength and antifriction measurements. The coating is mainly composed of Al2TiO5, TiO2, Al2O3 and amorphous substances regardless of the concentration of sodium tungstate. The sodium tungstate is transformed into trace amounts of WO3, which significantly promotes the growth of the coatings. The bonding strength and antifriction performance of the coatings are enhanced with the concentration of sodium tungstate less than 4 g/L, whereas excessive sodium tungstate results in a coarse outer layer with more microdefects, which deteriorates the wear resistance of the coating. Based on the results of scratch and wear test with energy-dispersive x-ray spectroscopy of the worn surface and debris, the optimal concentration of sodium tungstate doped into the electrolyte is identified, and this concentration yields superior tribological property. Excellent wear resistance is achieved by combining a high bonding strength and hardness with a less defective outer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Gebert, D. Eigel, P.F. Gostin, V. Hoffmann, M. Uhlemann, A. Helth, S. Pilz, R. Schmidt, M. Calin, M. Göttlicher, M. Rohnke, and J. Janek, Oxidation Treatments of Beta-Type Ti-40Nb for Biomedical Use, Surf. Coat. Technol., 2016, 302, p 88–99

    Article  CAS  Google Scholar 

  2. M. Kastenhuber, B. Rashkova, H. Clemens, and S. Mayer, Effect of Microstructural Instability on the Creep Resistance of an Advanced Intermetallic γ-TiAl Based Alloy, Intermetallics, 2017, 80, p 1–9

    Article  CAS  Google Scholar 

  3. M.S. Selim, S.A. El-Safty, M.A. El-Sockary, A.I. Hashem, O.M.A. Elenien, A.M. El-Saeed, and N.A. Fatthallah, Smart Photo-Induced Silicone/TiO2 Nanocomposites with Dominant [110] Exposed Surfaces for Self-Cleaning Foul-Release Coatings of Ship Hulls, Mater. Des., 2016, 101, p 218–225

    Article  CAS  Google Scholar 

  4. S. Hariprasad, M. Ashfaq, T. Arunnellaiappan, M. Harilal, and N. Rameshbabu, Role of Electrolyte Additives on In-Vitro Corrosion Behavior of DC Plasma Electrolytic Oxidization Coatings Formed on Cp-Ti, Surf. Coat. Technol., 2016, 292, p 20–29

    Article  CAS  Google Scholar 

  5. C.J. Hu and P.H. Chiu, Wear and Corrosion Resistance of Pure Titanium Subjected to Aluminization and Coated with a Microarc Oxidation Ceramic Coating, Int. J. Electrochem. Sci., 2015, 10, p 4290–4302

    CAS  Google Scholar 

  6. A.F. Yetim, Investigation of Wear Behavior of Titanium Oxide Films, Produced by Anodic Oxidation, on Commercially Pure Titanium in Vacuum Conditions, Surf. Coat. Technol., 2010, 205, p 1757–1763

    Article  CAS  Google Scholar 

  7. T. Dikici and M. Toparli, Microstructure and Mechanical Properties of Nanostructured and Microstructured TiO2 Films, Mater. Sci. Eng., A, 2016, 661, p 19–24

    Article  CAS  Google Scholar 

  8. H.X. Liu, Q. Xu, X.W. Zhang, C.Q. Wang, and B.Y. Tang, Wear and Corrosion Behaviors of Ti6Al4V Alloy Biomedical Materials by Silver Plasma Immersion Ion Implantation Process, Thin Solid Films, 2012, 521, p 89–93

    Article  CAS  Google Scholar 

  9. C.W. Chan, S. Lee, G. Smith, G. Sarri, C.H. Ng, A. Sharba, and H.C. Man, Enhancement of Wear and Corrosion Resistance of Beta Titanium Alloy by Laser Gas Alloying with Nitrogen, Appl. Surf. Sci., 2016, 367, p 80–90

    Article  CAS  Google Scholar 

  10. V.S. Viteri, G. Barandika, R. Bayón, X. Fernández, I. Ciarsolo, A. Igartua, R.P. Tanoira, J.E. Moreno, and C.P. Peremarch, Development of Ti–C–N Coatings with Improved Tribological Behavior and Antibacterial Properties, J. Mech. Behav. Biomed. Mater., 2016, 55, p 75–86

    Article  Google Scholar 

  11. E. Urbańczyk, A. Krząkała, A. Kazek-Kęsik, J. Michalska, A. Stolarczyk, G. Dercz, and W. Simka, Electrochemical Modification of Ti–13Nb–13Zr Alloy Surface in Phosphate Based Solutions, Surf. Coat. Technol., 2016, 291, p 79–88

    Article  Google Scholar 

  12. A. Gao, R.Q. Hang, and P.K. Chu, Recent Advances in Anti-Infection Surfaces Fabricated on Biomedical Implants by Plasma-Based Technology, Surf. Coat. Technol., 2017, 312, p 2–6

    Article  CAS  Google Scholar 

  13. O. Çomaklı, M. Yazıcı, T. Yetim, A.F. Yetim, and A. Çelik, The Effect of Calcination Temperatures on Structural and Electrochemical Properties of TiO2 Film Deposited on Commercial Pure Titanium, Surf. Coat. Technol., 2016, 285, p 298–303

    Article  Google Scholar 

  14. L.T. Duarte, S.R. Biaggio, R.C. Rocha-Filho, and N. Bocchi, Surface Characterization of Oxides Grown on the Ti–13Nb–13Zr Alloy and Their Corrosion Protection, Corros. Sci., 2013, 72, p 35–40

    Article  CAS  Google Scholar 

  15. J.H. Lee, J.I. Youn, Y.J. Kim, I.K. Kim, K.W. Jang, and H.J. Oh, Photocatalytic Characteristics of Boron and Nitrogen Doped Titania Film Synthesized by Micro-Arc Oxidation, Ceram. Int., 2015, 41, p 11899–11907

    Article  CAS  Google Scholar 

  16. S.X. Wang, Q. Zhao, D.X. Liu, and N. Du, Microstructure and Elevated Temperature Tribological Behavior of TiO2/Al2O3 Composite Ceramic Coating Formed by Microarc Oxidation of Ti6Al4V Alloy, Surf. Coat. Technol., 2015, 272, p 343–349

    Article  CAS  Google Scholar 

  17. K. Yousefipour, A. Akbari, and M.R. Bayati, The Effect of EEMAO Processing on Surface Mechanical Properties of the TiO2–ZrO2 Nanostructured Composite Coatings, Ceram. Int., 2013, 39, p 7809–7815

    Article  CAS  Google Scholar 

  18. H.R. Masiha, H.R. Bagheri, M. Gheytani, M. Aliofkhazraei, A. Sabour Rouhaghdam, and T. Shahrabi, Effect of Surface Nanostructuring of Aluminum Alloy on Post Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2014, 317, p 962–969

    Article  CAS  Google Scholar 

  19. F.C. Chang, C.J. Wang, J.W. Lee, and B.S. Lou, Microstructure and Mechanical Properties Evaluation of Molybdenum Disulfide-Titania Nanocomposite Coatings Grown by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2016, 303, p 68–77

    Article  CAS  Google Scholar 

  20. B. Yin, Z.J. Peng, J. Liang, K.J. Jin, S.Y. Zhu, J. Yang, and Z.H. Qiao, Tribological Behavior and Mechanism of Self-Lubricating Wear-Resistant Composite Coatings Fabricated by One-Step Plasma Electrolytic Oxidation, Tribol. Int., 2016, 97, p 97–107

    Article  CAS  Google Scholar 

  21. N. Ao, D.X. Liu, S.X. Wang, Q. Zhao, X.H. Zhang, and M.M. Zhang, Microstructure and Tribological Behavior of a TiO2/hBN Composite Ceramic Coating Formed Via Micro-Arc Oxidation of Ti–6Al–4 V Alloy, J. Mater. Sci. Technol., 2016, 32, p 1071–1076

    Article  Google Scholar 

  22. J.H. Ouyang, Y.H. Wang, Z.G. Liu, Y.M. Wang, and Y.J. Wang, Preparation and High Temperature Tribological Properties of Microarc Oxidation Ceramic Coatings Formed on Ti2AlNb Alloy, Wear, 2015, 330, p 239–249

    Article  Google Scholar 

  23. M.Q. Tang, W.P. Li, H.C. Liu, and L.Q. Zhu, Influence of K2TiF6 in Electrolyte on Characteristics of the Microarc Oxidation Coating on Aluminum Alloy, Curr. Appl. Phys., 2012, 12, p 1259–1265

    Article  Google Scholar 

  24. Y.M. Wang, T.Q. Lei, L.X. Guo, and B.L. Jiang, Fretting Wear Behaviour of Microarc Oxidation Coatings Formed on Titanium Alloy Against Steel in Unlubrication and Oil Lubrication, Appl. Surf. Sci., 2006, 252, p 8113–8120

    Article  CAS  Google Scholar 

  25. M. Babaei, C. Dehghanian, and M. Babaei, Electrochemical Assessment of Characteristics and Corrosion Behavior of Zr-Containing Coatings Formed on Titanium by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2015, 279, p 79–91

    Article  CAS  Google Scholar 

  26. D. Quintero, M.A. Gomez, J.G. Castano, E. Tsuji, Y. Aoki, F. Echeverria, and H. Habazaki, Anodic Films Obtained on Ti6Al4V in Aluminate Solutions by Spark Anodizing: Effect of OH and WO-2 4 Additions on the Tribological Properties, Surf. Coat. Technol., 2017, 310, p 180–189

    Article  CAS  Google Scholar 

  27. M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, and R. Molaei, A Photocatalytic Approach in Micro Arc Oxidation of WO3–TiO2 Nano Porous Semiconductors Under Pulse Current, Mater. Chem. Phys., 2011, 128, p 427–432

    Article  CAS  Google Scholar 

  28. M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard, and R. Molaei (WO3)x–(TiO2)1−x Nano-Structured Porous Catalysts Grown by Micro-Arc Oxidation Method: Characterization and Formation Mechanism, Mater. Chem. Phys., 2010, 124, p 203–207

    Article  CAS  Google Scholar 

  29. J. He, Q. Luo, Q.Z. Cai, X.W. Li, and D.Q. Zhang, Microstructure and Photocatalytic Properties of WO3/TiO2 Composite Films by Plasma Electrolytic Oxidation, Mater. Chem. Phys., 2011, 129, p 242–248

    Article  CAS  Google Scholar 

  30. A. Banerji, S. Bhowmick, and A.T. Alpas, High Temperature Tribological Behavior of W Containing Diamond-Like Carbon (DLC) Coating Against Titanium Alloys, Surf. Coat. Technol., 2014, 241, p 93–104

    Article  CAS  Google Scholar 

  31. O.D. Greenwood, S.C. Moulzolf, P.J. Blau, and R.J. Lad, The Influence of Microstructure on Tribological Properties of WO3 Thin Films, Wear, 1999, 232, p 84–90

    Article  CAS  Google Scholar 

  32. J. Raudoniene, A. Laurikenas, M.M. Kaba, G. Sahin, A.U. Morkan, D. Brazinskiene, S. Asadauskas, R. Seidu, A. Kareiva, and E. Garskaite, Textured WO3 and WO3: Mo Films Deposited from Chemical Solution on Stainless Steel, Thin Solid Films, 2018, 653, p 179–187

    Article  CAS  Google Scholar 

  33. C.C. Tseng, J.L. Lee, T.H. Kuo, S.N. Kuo, and K.H. Tseng, The Influence of Sodium Tungstate Concentration and Anodizing Conditions on Microarc Oxidation (MAO) Coatings for Aluminum Alloy, Surf. Coat. Technol., 2012, 206, p 3437–3443

    Article  CAS  Google Scholar 

  34. Q.P. Tran, Y.C. Kuo, J.K. Sun, J.L. He, and T.S. Chin, High Quality Oxide-Layers on Al-Alloy by Micro-Arc Oxidation Using Hybrid Voltages, Surf. Coat. Technol., 2016, 303, p 61–67

    Article  CAS  Google Scholar 

  35. F.H. Chung, Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. II. Adiabatic Principle of X-ray Diffraction Analysis of Mixtures, J. Appl. Crystallogr., 1974, 7, p 526–531

    Article  Google Scholar 

  36. L. Chen, Y. Qu, X. Yang, B. Liao, W. Xue, and W. Cheng, Characterization and First-Principles Calculations of WO3/TiO2 Composite Films on Titanium Prepared by Microarc Oxidation, Mater. Chem. Phys., 2017, 201, p 311–322

    Article  CAS  Google Scholar 

  37. J.M. Albella, I. Montero, and J.M. Martinez-Duart, Electron injection and Avalanche During the Anodic Oxidation of Tantalum, J. Electrochem. Soc., 1984, 131, p 1101–1104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China [Grant Number 51771117] and Collaborative Innovation Center for Advanced Ship and Deep-sea Exploration (Shanghai Jiao Tong University). We are indebted to the Center for Advanced Electronic Materials and Devices (AEMD, Shanghai Jiao Tong University) for test supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Ding, Y., Luo, Q. et al. The Effects of Sodium Tungstate on the Characteristics of Microarc Oxidation Coating on Ti6Al4V. J. of Materi Eng and Perform 27, 5489–5499 (2018). https://doi.org/10.1007/s11665-018-3613-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3613-2

Keywords

Navigation