Skip to main content

Advertisement

Log in

Multiphase Microstructure in a Metastability-Assisted Medium Carbon Alloy Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A medium carbon alloy steel is processed by austenizing at 900 °C for 30 min, then rapid quenching into a patented quenching liquid and holding at 170 °C for 5 min, finally isothermally holding at 250 °C for different times. The morphology and mechanical properties are performed by using optical microscopy and scanning electron microscopy. A multiphase microstructure characterized by a mixture of lenticular prior martensite (PM), fine needle bainitic ferrite and filmy retained austenite (RA) is obtained. It is found that the PM formed firstly upon quenching can accelerate the subsequent bainitic transformation and promote refinement of multiphase colonies. The results show that an optimum mechanical property of a 4000.9 MPa bending strength and a 2030 MPa tensile strength is achieved at 250 °C for 120 min, which is attributed to the multiphase microstructural characteristics and a high product of the volume fraction of RA and the carbon content of austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F.G. Caballero, S. Allain, J.D. Puerta-Velásquez, and C. Garcia-Mateo, Exploring Carbide-Free Bainitic Structures for Hot Dip Galvanizing Products, ISIJ Int., 2013, 53, p 1253-1259

    Article  Google Scholar 

  2. D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, and E. De Moor, Characterization of Transition Carbides in Quench and Partitioned Steel Microstructures by Mössbauer Spectroscopy and Complementary Techniques, Acta Mater., 2015, 90, p 417-430

    Article  Google Scholar 

  3. Y. Chang, G.Z. Li, C.Y. Wang, X.D. Li, and H. Dong, Effect of Quenching and Partitioning with Hot Stamping on Martensite Transformation and Mechanical Properties of AHSS, J. Mater. Eng. Perform., 2015, 24, p 3194-3200

    Article  Google Scholar 

  4. N. Fonstein, Candidates for Third-Generation Steels: Q&P Processed Steels. In Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties, 1st edn (Springer International Publishing, 2015), chapter 10: p 327-368

  5. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Quenching and Partitioning Martensite—A Novel Steel Heat Treatment, Mater. Sci. Eng. A, 2006, 438-440, p 25-34

    Article  Google Scholar 

  6. H. Wu, C. Liu, Z. Zhao, Y. Zhao, S. Zhu, Y. Liu, and S. Bhole, Design of Air-cooled Bainitic Microalloyed Steel for a Heavy Truck Front Axle Beam, Mater. Des., 2006, 27, p 651-656

    Article  Google Scholar 

  7. S. Samanta, S. Das, D. Chakrabarti, I. Samajdar, S.B. Singh, and A. Haldar, Development of Multiphase Microstructure with Bainite, Martensite, and Retained Austenite in a Co-Containing Steel Through Quenching and Partitioning (Q&P) Treatment, Metall. Mater. Trans. A, 2013, 44, p 5653-5664

    Article  Google Scholar 

  8. M. Koyama, Z. Zhang, M.M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, and C.C. Tasan, Bone-like Crack Resistance in Hierarchical Metastable Nanolaminate Steels, Science, 2017, 355, p 1055-1057

    Article  Google Scholar 

  9. C. Yang, X.X. Cui, and C. Liu, Multiphase Matrix Structure of Unalloyed Austempered Ductile Iron, Mater. Sci. Technol., 2018, 34, p 261-267

    Article  Google Scholar 

  10. F. Tariq and R.A. Baloch, One-Step Quenching and Partitioning Heat Treatment of Medium Carbon Low Alloy Steel, J. Mater. Eng. Perform., 2014, 23, p 1726-1739

    Article  Google Scholar 

  11. C. Liu, C. Yang, L.M. Yuan, and D.O. Northwood, Role of Pre-formed Martensite on Transformation of Austempered Ductile Iron, Mater. Sci. Technol., 2017, 33, p 1819-1828

    Article  Google Scholar 

  12. H. Amel-Farzad, H.R. Faridi, F. Rajabpour, A. Abolhasani, S. Kazemi, and Y. Khaledzadeh, Developing Very Hard Nanostructured Bainitic Steel, Mater. Sci. Eng. A, 2013, 559, p 68-73

    Article  Google Scholar 

  13. R.M. Wu, W. Li, S. Zhou, Y. Zhong, L. Wang, and X.J. Jin, Effect of Retained Austenite on the Fracture Toughness of Quenching and Partitioning (Q&P)-treated Sheet Steels, Metall. Mater. Trans. A, 2014, 45, p 1892-1902

    Article  Google Scholar 

  14. Y. Toji, H. Matsuda, and D. Raabe, Effect of Si on the Acceleration of Bainite Transformation by Pre-existing Martensite, Acta Mater., 2016, 116, p 250-262

    Article  Google Scholar 

  15. C.E. Ericsson, M.S. Bhat, E.R. Parker, and V.F. Zackay, Isothermal Studies of Bainitic and Martensitic Transformations in Some Low Alloy Steels, Metall. Trans. A, 1976, 7, p 1800-1803

    Article  Google Scholar 

  16. H. Kawata, K. Hayashi, N. Sugiura, N. Yoshinaga, and M. Takahashi, Effect of Martensite in Initial Structure on Bainite Transformation, Mater. Sci. Forum, 2010, 638, p 3307-3312

    Article  Google Scholar 

  17. W. Gong, Y. Tomota, S. Harjo, Y.H. Su, and K. Aizawa, Effect of Prior Martensite on Bainite Transformation in Nanobainite Steel, Acta Mater., 2015, 85, p 243-249

    Article  Google Scholar 

  18. A. Navarro-López, J. Sietsma, and M.J. Santofimia, Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below Ms in a Low-C High-Si Steel, Metall. Mater. Trans. A, 2016, 47, p 1028-1039

    Article  Google Scholar 

  19. H. Santos, A. Duarte, and J. Seabra, Austempered Ductile Iron with Tempered Martensite, lnt. J. Cast Met. Res., 2002, 15, p 117-124

    Article  Google Scholar 

  20. C.J. Martis, S.K. Putatunda, and J. Boileau, Processing of New High Strength High Toughness Steel with Duplex Microstructure (Ferrite + Austenite), Mater. Des., 2013, 46, p 168-174

    Article  Google Scholar 

  21. Y. Huang, X.L. Zhang, W.N. Liu, X.M. Wang, and J.K. Han, Microstructure and Mechanical Properties of NANOBAIN Steel, J. Iron. Steel Res. Int., 2016, 23, p 253-260

    Article  Google Scholar 

  22. M.N. Yoozbashi and S. Yazdani, Mechanical Properties of Nanostructured, Low Temperature Bainitic Steel Designed Using a Thermodynamic Model, Mater. Sci. Eng. A, 2010, 527, p 3200-3205

    Article  Google Scholar 

  23. P. Luo, G. Gao, H. Zhang, Z. Tan, R.D.K. Misra, and B.Z. Bai, On Structure-property Relationship in Nanostructured Bainitic Steel Subjected to the quenching and partitioning process, Mater. Sci. Eng. A, 2016, 661, p 1-8

    Article  Google Scholar 

  24. H. Wu, Y. Jiang, S.S. You, Y. Han, and Y.X. Liu, Study on TRIP Effect of Retained Austenite in Super-bainite Microstructure, J. Mech. Eng., 2014, 50, p 69-75 (in Chinese)

    Article  Google Scholar 

  25. Y. Han, H. Wu, C. Liu, and Y.X. Liu, Medium Carbon Super-Bainitic Steel After Isothermal Transformation. J. Mater. Eng. Perform. 2014, 23, p 4230-4236

    Article  Google Scholar 

  26. X. Zhang, G. Xu, X. Wang, D. Embury, O. Bouaziz, O. Bouaziz, G.R. Purdy, and H.S. Zurob, Mechanical Behavior of Carbide-free Medium Carbon Bainitic Steels, Metall. Mater. Trans. A, 2014, 45, p 1352-1361

    Article  Google Scholar 

  27. D.P. Koistinen and R.E. Marburger, A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-carbon Alloys and Plain Carbon Steels, Acta Metall., 1959, 7, p 59-60

    Article  Google Scholar 

  28. J. Mallia, M. Grech, and R.E. Smallman, Effect of Silicon Content on Transformation Kinetics of Austempered Ductile Iron, Mater. Sci. Technol., 1998, 14, p 452-460

    Article  Google Scholar 

  29. C. Yang, X.X. Cui, Z.B. Zhao, G. Hua, and C. Liu, Role of Bulky Retained Austenite in Austempered Ductile Iron, Adv. Mater. Res., 2016, 1142, p 19-22

    Article  Google Scholar 

  30. S.M.C. van Bohemen, Bainite and Martensite Start Temperature Calculated with Exponential Carbon Dependence, Mater. Sci. Technol., 2012, 28, p 487-495

    Article  Google Scholar 

  31. Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw, and D. Raabe, Effects of Retained Austenite Volume Fraction, Morphology, and Carbon Content on Strength and Ductility of Nanostructured TRIP-assisted Steels, Mater. Sci. Eng. A, 2015, 636, p 551-564

    Article  Google Scholar 

  32. S.K. Putatunda and P.K. Gadicherla, Effect of Austempering Time on Mechanical Properties of a Low Manganese Austempered Ductile Iron, J. Mater. Eng. Perform., 2000, 9, p 193-203

    Article  Google Scholar 

  33. W.S. Li, H.Y. Gao, Z.Y. Li, H. Nakashima, S. Hata, and W.H. Tian, Effect of Lower Bainite/Martensite/Retained Austenite Triplex Microstructure on the Mechanical Properties of a Low-carbon Steel with Quenching and Partitioning Process, Int. J. Min. Met. Mater., 2016, 23, p 303

    Article  Google Scholar 

  34. K. Abbaszadeh, H. Saghafian, and S. Kheirandish, Effect of Bainite Morphology on Mechanical Properties of the Mixed Bainite-martensite Microstructure in D6AC Steel, J. Mater. Sci. Technol., 2012, 28, p 336-342

    Article  Google Scholar 

  35. K.K. Wang, Z.L. Tan, G.H. Gao, and X.L. Gui, R.DK. Misra and B.Z. Bai, Ultrahigh Strength-toughness Combination in Bainitic Rail Steel: The Determining Role of Austenite Stability during Tempering, Mater. Sci. Eng. A, 2016, 662, p 162-168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Cui, X. & Yang, C. Multiphase Microstructure in a Metastability-Assisted Medium Carbon Alloy Steel. J. of Materi Eng and Perform 27, 3239–3247 (2018). https://doi.org/10.1007/s11665-018-3378-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3378-7

Keywords

Navigation