Skip to main content
Log in

Electrical Transport Properties of Single-Crystalline β-Zn4Sb3 Prepared Through the Zn-Sn Mixed-Flux Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

β-Zn4Sb3 is a promising p-type thermoelectric material for utilization in moderate temperatures. This study prepares a group of single-crystalline β-Zn4Sb3 samples using the Zn-Sn mixed-flux method based on the stoichiometric ratios of Zn4+x Sb3Sn y . The effect of Zn-to-Sn proportion in the flux on the structure and electrical transport properties is investigated. All samples are strip-shaped single crystals of different sizes. The actual Zn content of the present samples is improved (>3.9) compared with that of the samples prepared through the Sn flux method. Larger lattice parameters are also obtained. The carrier concentration of all the samples is in the order of over 1019 cm−3. With increasing Sn rate in the flux, this carrier concentration decreases, whereas mobility is significantly enhanced. The electrical conductivity and Seebeck coefficients of all the samples exhibit a behavior that of a degenerate semiconductor transport. Electrical conductivity initially increases and then decreases as the Sn ratio in the flux increases. The electrical conductivity of the x:y = 5:1 sample reaches 6.45 × 104 S m−1 at 300 K. Benefitting from the electrical conductivity and Seebeck coefficient, the flux proportion of the x:y = 7:1 sample finally achieves the highest power factor value of 1.4 × 10−3 W m−1 K−2 at 598 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Wood, Materials for Thermoelectric Energy Conversion, Rep. Prog. Phys., 1988, 51, p 459

    Article  Google Scholar 

  2. F. Cheng, L. Shen, D. Li, H. Liu, J. Wang, and S. Deng, Preparation and Thermoelectric Properties of Sn-Based Type VIII Single-Crystalline Clathrate Via a-Sn Flux, Method. J. Mater. Eng. Perform., 2016, 25, p 2180–2184

  3. F. Ioffe, Semiconductor Thermoelements and Thermoelectric cooling, Inforsearch Limited, London, 1957

    Google Scholar 

  4. J. Wang, F. Cheng, H. Liu, D. Li, L. Shen, K. Shen, and S. Deng, Structural and Electronic Properties of Type I, and VIII, Sr8Ga16Sn30 Clathrates Under Compression, Mater. Technol.: Adv. Perform. Mater., 2016, 31, p 216–221

    Google Scholar 

  5. G.A. Slack, CRC Handbook of Thermoelectrics, M. Rowe Ed., Boca Raton, FL, CRC Press, 1995, p 407–440

  6. H. Liu, S. Deng, D. Li, L. Shen, F. Cheng, J. Wang, and S. Deng, Preparation and Oxidation Resistance of Single Crystalline β-Zn4Sb3, Phys. B, 2016, 500, p 9–13

    Article  Google Scholar 

  7. T. Caillat, J.P. Fleurial, and A. Borshchevsky, Preparation and Thermoelectric Properties of Semiconducting Zn4Sb3, J. Phys. Chem. Solids, 1997, 58, p 1119–1125

    Article  Google Scholar 

  8. T. Caillat and J.-P. Fleurial, Zn-Sb Alloys for Thermoelectric Power Generation, Energy Convers. Eng. Conf. IEEE, 1996, 2, p 905–909

    Google Scholar 

  9. S. Fujimoto, S. Sano, and T. Kajitani, Protections of the Aging of n-Type Bi-Te Thermoelectric Materials Doped with Cu or Cu-Halide, J. Alloys Cmpd., 2007, 443, p 182–190

    Article  Google Scholar 

  10. M.A. Mcguire, A.S. Malik, and F.J. Disalvo, Effects of High-Pressure High-Temperature Treatment on the Thermoelectric Properties of PbTe, J. Alloys Cmpd., 2008, 460, p 8–12

    Article  Google Scholar 

  11. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Disordered Zinc in Zn4Sb3 with Phonon-Glass and Electron-Crystal Thermoelectric Properties, Nat. Mater., 2004, 3, p 458–463

    Article  Google Scholar 

  12. C. Fausto, N. Eiji, R. Philippe, L. Bertini, G.J. Snyder, M. Christensen, C. Gatti, and B.B. Iversen, Interstitial Zn Atoms Do the Trick in Thermoelectric Zinc Antimonide, Zn4Sb3: A Combined Maximum Entropy Method X-ray Electron Density And Ab Initio Electronic Structure Study, Chem. Eur. J., 2004, 10, p 3861–3870

    Article  Google Scholar 

  13. E. Chalfin, H. Lu, and R. Dieckmann, Cation Tracer Diffusion in the Thermoelectric Materials Cu3 Mo6 Se8 and “β-Zn4Sb3”, Solid State Ion., 2007, 178, p 447–456

    Article  Google Scholar 

  14. S.Y. Wang, X.Y. She, G. Zheng, F. Fu, H. Li, and X.F. Tang, Enhanced Thermoelectric Performance and Thermal Stability in β-Zn4Sb3 by Slight Pb-Doping, J. Electron. Mater., 2012, 41, p 1091–1099

    Article  Google Scholar 

  15. J. Lin, X. Li, G. Qiao, Z. Wang, J. Carrete, Y. Ren, L. Ma, Y. Fei, B. Yang, L. Lei, and J. Li, Unexpected High-Temperature Stability of β-Zn4Sb3 Opens the Door to Enhanced Thermoelectric Performance, J. Am. Chem. Soc., 2013, 136, p 1497–1504

    Article  Google Scholar 

  16. O.M. Løvvik, P. Rauwel, and Ø. Prytz, Self-Diffusion in Zn4Sb3 from First-Principles Molecular Dynamics, Comput. Mater. Sci., 2011, 50, p 2663–2665

    Article  Google Scholar 

  17. B.C. Sales, Electron Crystals and Phonon Glasses: A New Path to Improved Thermoelectric Materials, MRS Bull., 1998, 23, p 15–21

    Article  Google Scholar 

  18. S.G. Kim, I.I. Mazin, and D.J. Singh, First Principles Study of Zn-Sb Thermoelectrics, Phys. Rev. B, 1997, 57, p 6199–6203

    Article  Google Scholar 

  19. E.S. Toberer, Composition and the Thermoelectric Performance of β-Zn4Sb3, J. Mater. Chem., 2010, 20, p 9877–9885

    Article  Google Scholar 

  20. Q. Qi, X. Tang, C. Xiong, W. Zhao, and Q. Zhang, Effects of excessive Zn on the thermoelectric properties of β-Zn4Sb3, Acta Phys. Sin., 2006, 55, p 5539–5544

    Google Scholar 

  21. S.C. Ur, J.C. Kwon, I.H. Kim, P. Nash, Y.G. Lee, S.Y. Kweon, and T.W. Hong, Effect of Zn Addition on Thermoelectric Properties of Zn 4 Sb 3 Synthesized by Direct Hot Pressing, Thermoelectrics, 2005. ICT 2005. 24th International Conference on. IEEE, 2005, p 403–406.

  22. X. Shai, S. Deng, D. Meng, L. Shen, and D. Li, Thermal Stability and Electrical Transport Properties of β-Zn4Sb3 Single Crystal Prepared by Sn-Flux Method, Phys. B, 2014, 452, p 148–151

    Article  Google Scholar 

  23. K.W. Jang, I.H. Kim, J.I. Lee, and G.S. Choi, Effect of Excess Zn on Thermoelectric Properties of Zn 4 Sb 3 , Thermoelectrics, 2006. ICT ‘06. 25th International Conference on. IEEE, 2006, p 528–530.

  24. X. Shai, S. Deng, L. Shen, D. Meng, D. Li, Y. Zhang, and X. Jiang, Preparation, Thermal Stability, and Electrical Transport Properties of In/Sn codoped β-Zn4Sb3 Single Crystal, Phys. Status Solidi, 2015, 252, p 795–799

    Article  Google Scholar 

  25. J. Nylén, M. Andersson, S. Lidin, and Ulrich Häussermann, The Structure of α-Zn4Sb3: Ordering of the Phonon-Glass Thermoelectric Material β-Zn4Sb3, J. Am. Chem. Soc., 2004, 126, p 16306–16307

    Article  Google Scholar 

  26. G.J. Snyder and E.S. Toberer, Complex Thermoelectric Materials, Nat. Mater., 2008, 7, p 105–114

    Article  Google Scholar 

  27. W. Chen and J. Li, Origin of the Low Thermal Conductivity of the Thermoelectric Material β-Zn4Sb3: An Ab Initio Theoretical Study, Appl. Phys. Lett., 2011, 98, p 24190

    Google Scholar 

  28. S. Wang, X. Tan, G. Tan, X. She, W. Liu, H. Li, H. Liu, and X. Tang, The Realization of a High Thermoelectric Figure of Merit in Ge-Substituted β-Zn4Sb3 Through Band Structure Modification, J. Mater. Chem., 2012, 22, p 13977–13985

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (Grant No.51262032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shukang Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Deng, S., Shen, L. et al. Electrical Transport Properties of Single-Crystalline β-Zn4Sb3 Prepared Through the Zn-Sn Mixed-Flux Method. J. of Materi Eng and Perform 26, 1026–1031 (2017). https://doi.org/10.1007/s11665-017-2530-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2530-0

Keywords

Navigation