Skip to main content
Log in

Experimental Study on Creep Characterization and Lifetime Estimation of RPV Material at 723-1023 K

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

During the plant operation, nuclear reactor pressure vessel (RPV) is the most critical pressure boundary component for integrity and safety in a light-water reactor. In this paper, the creep behavior and properties for RPV metallic material are studied by conducting constant-temperature and constant-load creep tests at 723, 823, 923 and 1023 K. The θ projection constitutive model was established based on a creep method to describe the high-temperature creep behavior of RPV material. The material parameter θ would be obtained based on experimental data by depending on numerical optimization techniques. The relationship between and among θ, T and σ was evaluated, and the coefficients a i , b i , c i and d i were obtained. Based on the short-term tests at a high temperature, the values for long-term creep data could be predicted in accordance with parameter θ. Moreover, rupture life, the minimum creep rate and the time reaching to an arbitrary strain can be calculated and may be used to evaluate the damage behavior and properties, so as to be used as a reference for design and safety assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Baldan and E. Tascioglu, Assessment of θ-Projection Concept and Fracture Cavitation, J. Mater. Sci., 2008, 43, p 4592–4606

    Article  Google Scholar 

  2. N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A, 2012, 535, p 252–257

    Article  Google Scholar 

  3. Y.C. Lin, Y.C. Xia, M.S. Chen, Y.Q. Jiang, and L.T. Li, Modeling the Creep Behavior of 2024-T3 Al Alloy, Comput. Mater. Sci., 2013, 67, p 243–248

    Article  Google Scholar 

  4. Y.Q. Jiang, Y.C. Lin, C. Phaniraj, Y.C. Xia, and H.M. Zhou, Creep and Creep–Rupture Behavior of 2124-T851 Aluminum Alloy, High Temp. Mat. Pr-isr., 2013, 32, p p533–p540

    Google Scholar 

  5. P.W. Davies, W.J. Evans, K.R. Williams, and B. Wilshire, An Equation to Represent Strain Time Relationship During High Temperature Creep, Scr. Metall., 1969, 9, p 671–674

    Article  Google Scholar 

  6. L.D. Blackburn, Isochronous stress–strain curves for austenitic steels, The Generation of Isochronous Stress–Strain Curves, G.V. Smith, Ed., ASME, NewYork, 1972,

    Google Scholar 

  7. R.W. Evans, J.D. Parker, and B. Wilshire, The Theta Projection Concept a Model-Based Approach to Design and Life Extension of Engineering Plant, Int. J. Pres. Vessels Pip., 1992, 50, p 147–160

    Article  Google Scholar 

  8. F. Garofalo, Fundamentals of Creep and Creep Rupture in Metals, Macmillan Co, New York, 1969

    Google Scholar 

  9. K. Maruyama, C. Harada, and H. Oikawa, A Strain–Time Equation Applicable Up to Tertiary Creep Stage, J. Soc. Mater. Sci. Jpn., 1985, 34, p 1289–1295

    Article  Google Scholar 

  10. C. Phaniraj, B.K. Choudhary, B. Raj, and T. Jayakumar, Comment on “Deformation and Damage Processes During Creep of Incoloy MA957” by B. Wilshire and T.D. Lie’, Mater. Sci. Eng. A, 2005, 398, p 373–375

    Article  Google Scholar 

  11. B. Wilshire and D.R.J. Owen, Recent Advances in Creep and Fracture of Engineering Materials and Structures, Pineridge Press, Swansea, 1982

    Google Scholar 

  12. W. Blum and B. Reppich, Creep Behavior of Crystalline Olids, Pineridge Press, Swansea, 1985

    Google Scholar 

  13. H. Wolf, M.D. Mathew, S.L. Mannan, and P. Rodriguez, Prediction of Creep Parameters of Type 316 Stainless Steel Under Service Conditions Using the h-Projection Concept, Mater. Sci. Eng. A, 1992, 159, p 199–204

    Article  Google Scholar 

  14. S. Fujibayashi, M. Miura, and K. Togashi, Life Prediction of Low Alloy Ferritic Steels Based Upon the Tertiary Creep Behavior, ISIJ Int., 2004, 44, p 919–926

    Article  Google Scholar 

  15. C.M. Omprakash, A. Kummar, B. Srivathsa, and D.V.V. Satyanarayana, Prediction of Creep Curves of High Temperature Alloy using θ-Projection Concept, Proc. Eng., 2013, 55, p 756–759

    Article  Google Scholar 

  16. Y.C. Lin, Y.C. Xia, X.S. Ma, Y.Q. Jiang, and M.S. Chen, High-Temperature Creep Behavior of Al-Cu-Mg Alloy, Mater. Sci. Eng. A., 2012, 550, p 125–130

    Article  Google Scholar 

  17. Y.C. Lin, Y.Q. Jiang, H.M. Zhou, and G. Liu, A New Creep Constitutive Model for 7075 Aluminium Alloy Under Elevated Temperatures, J. Mater. Eng. Perform., 2014, 23, p 4350–4357

    Article  Google Scholar 

  18. B. Wilshire and H. Burt, creep Data Prediction for Aluminium Airframe Alloys, Mater. Sci. Forum, 2003, 464, p 261–266

    Article  Google Scholar 

  19. Woo-Gon Kim, Song-Nan Yin, Yong-Wan Kim, and Jong-Hwa Chan, Creep Characterization of a Ni-Based Hastelloy-X Alloy by Using Theta Projection Method, Eng. Fract. Mec., 2008, 75, p 4985–4995

    Article  Google Scholar 

  20. B.F. Dyson, D.R. Hayhurst, and J. Lin, The Ridged Uniaxial Testpiece Creep and Fracture Predictions Using Large-Displacement Finite-Element Analyses, Proc. R. Soc. Lond. Ser. A, 1996, 452, p 655–676

    Article  Google Scholar 

  21. B. Jiang, T. Wang, Z. Qua, R. Wu, and M. Zhang, Creep Behaviors of Mg-5Li-3Al-(0,1)Ca Alloys, Mater. Des., 2011, 34, p 863–866

    Article  Google Scholar 

  22. F.V. Tahami, A.H. Daei-Sorkhabi, and F.R. Biglari, Creep Constitutive Equations for Cold-Drawn 304l Stainless Steel, Mater. Sci. Eng. A, 2010, 27, p 4993–4999

    Article  Google Scholar 

  23. ASTM, E8M-04: Standard Test Methods for Tension Testing of Metallic Materials (Metric), Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2004

  24. ASTM, E139e06: Standard Tests of Metallic Materials, Creep, Creep-rupture and Stress Rupture Tests of Metallic Materials, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Jun Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, LJ., Ning, D. & Yang, Yz. Experimental Study on Creep Characterization and Lifetime Estimation of RPV Material at 723-1023 K. J. of Materi Eng and Perform 26, 644–652 (2017). https://doi.org/10.1007/s11665-016-2498-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2498-1

Keywords

Navigation