Skip to main content

Advertisement

Log in

Improved Corrosion Resistance of As-Extruded GZ51K Biomagnesium Alloy with High Mechanical Properties by Aging Treatment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effects of aging treatment on microstructure, mechanical properties, and corrosion behavior of the as-extruded Mg-5Gd-1Zn-0.6Zr (GZ51K, wt.%) alloy were investigated. Microstructure was observed by optical microscopy and scanning electron microscopy, mechanical properties were tested on a tensile test machine and a microhardness tester, and corrosion behavior was evaluated by mass loss and polarization tests. It is found that most of equiaxed α-Mg grains have long-period stacking ordered (LPSO) structure, and some of them have no LPSO structure. Long-elongated grains are formed in the as-extruded alloy due to partial recrystallization and disappear after being aged at 200 and 220 °C. The as-extruded alloy exhibits both high-yield strength and high ductility. The mechanical properties of the alloy are not apparently enhanced, but the corrosion resistance is significantly improved after aging treatment. Moreover, the alloy with LPSO structure presents uniform corrosion mode in simulated body fluid. The GZ51K alloy with high mechanical properties and uniform corrosion behavior is worthy to be further investigated for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R, 2014, 77, p 1–34

    Article  Google Scholar 

  2. Z.H. Wang, N. Li, R. Li, Y.W. Li, and L.Q. Ruan, Biodegradable Intestinal Stents: A Review, Prog. Nat. Mater. Int., 2014, 24, p 423–432

    Article  Google Scholar 

  3. N.T. Kirkland, Magnesium Biomaterials: Past, Present and Future, Corros. Eng. Sci. Technol., 2012, 47, p 322–328

    Article  Google Scholar 

  4. Y.J. Chen, Z.G. Xu, C. Smith, and J. Sankar, Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants, Acta Biomater., 2014, 10, p 4561–4573

    Article  Google Scholar 

  5. X. Li, C.L. Chu, L. Liu, X.K. Liu, J. Bai, C. Guo, F. Xue, P.H. Lin, and P.K. Chu, Biodegradable Poly-Lactic Acid Based-Composite Reinforced Unidirectionally with High-Strength Magnesium Alloy Wires, Biomaterials, 2015, 49, p 135–144

    Article  Google Scholar 

  6. H. Du, Z.J. Wei, X.W. Liu, and E.L. Zhang, Effects of Zn on the Microstructure, Mechanical Property and Bio-Corrosion Property of Mg-3Ca Alloys for Biomedical Application, Mater. Chem. Phys., 2011, 125, p 568–575

    Article  Google Scholar 

  7. T. Li, H.L. Zhang, Y. He, N. Wen, and X.T. Wang, Microstructure, Mechanical Properties and In Vitro Degradation Behavior of a Novel Biodegradable Mg-1.5Zn-0.6Zr-0.2Sc Alloy, J. Mater. Sci. Technol., 2015, 31, p 744–750

    Article  Google Scholar 

  8. H. Li, Q.M. Peng, X.J. Li, K. Li, Z.S. Han, and D.Q. Fang, Microstructures, Mechanical and Cytocompatibility of Degradable Mg-Zn Based Orthopedic Biomaterials, Mater. Des., 2014, 58, p 43–51

    Article  Google Scholar 

  9. X.B. Zhang, Z.X. Ba, Q. Wang, Y.J. Wu, Z.Z. Wang, and Q. Wang, Uniform Corrosion Behavior of GZ51K Alloy with Long Period Stacking Ordered Structure for Biomedical Application, Corros. Sci., 2014, 88, p 1–5

    Article  Google Scholar 

  10. H. Qin, Y.C. Zhao, Z.Q. An, M.Q. Cheng, Q. Wang, T. Cheng, Q.J. Wang, J.X. Wang, Y. Jiang, X.L. Zhang, and G.Y. Yuan, Enhanced Antibacterial Properties, Biocompatibility, and Corrosion Resistance of Degradable Mg-Nd-Zn-Zr Alloy, Biomaterials, 2015, 53, p 211–220

    Article  Google Scholar 

  11. C.Y. Zhao, F.S. Pan, S. Zhao, H.C. Pan, K. Song, and A.T. Tang, Preparation and Characterization of As-Extruded Mg-Sn Alloys for Orthopedic Applications, Mater. Des., 2015, 70, p 60–67

    Article  Google Scholar 

  12. X.B. Zhang, G.Y. Yuan, X.X. Fang, Z.Z. Wang, and T. Zhang, Effects of Solution Treatment on Yield Ratio and Biocorrosion Behaviour of As-Extruded Mg-2.7Nd-0.2Zn-0.4Zr Alloy for Cardiovascular Stent Application, Mater. Technol., 2013, 28, p 155–158

    Article  Google Scholar 

  13. X.B. Zhang, Y. Zhang, K. Chen, Z.X. Ba, Z.Z. Wang, and Q. Wang, Microstructure, Mechanical and Corrosion Properties of a Mg-Nd-Zn-Sr-Zr Alloys as Biodegradable Material, Mater. Sci. Technol., 2015, 31, p 866–873

    Article  Google Scholar 

  14. K. Chen, J.W. Dai, and X.B. Zhang, Improvement of Corrosion Resistance of Magnesium Alloys for Biomedical Applications, Corros. Rev., 2015, 33, p 101–117

    Article  Google Scholar 

  15. G. Manivasagam and S. Suwas, Biodegradable Mg and Mg Based Alloys for Biomedical Implants, Mater. Sci. Technol., 2014, 30, p 515–520

    Article  Google Scholar 

  16. Y.S. Jeong and W.J. Kim, Enhancement of Mechanical Properties and Corrosion Resistance of Mg-Ca Alloys Through Microstructural Refinement by Indirect Extrusion, Corros. Sci., 2014, 82, p 392–403

    Article  Google Scholar 

  17. L. Zhang, D. Zhang, Y. Dong, F. Guo, G. Hu, H. Xue, and F. Pan, Microstructure and Tensile Properties of As-Extruded and as Aged Mg-Al-Zn-Mn-Sn Alloy, Mater. Sci. Technol., 2015, 31, p 1088–1095

    Article  Google Scholar 

  18. F. Liu, C.X. Chen, J.L. Niu, J. Pei, H. Zhang, H. Huang, and G.Y. Yuan, The Processing of Mg Alloy Micro-Tubes for Biodegradable Vascular Stents, Mater. Sci. Eng. C, 2015, 48, p 400–407

    Article  Google Scholar 

  19. X.B. Zhang, Y.J. Xue, Z.Z. Wang, X.C. He, and Q. Wang, Microstructure, Mechanical and Corrosion Properties of Mg-(4−x)Nd-xGd-Sr-Zn-Zr Biomagnesium Alloys, Acta Metall. Sin., 2014, 50, p 979–988

    Google Scholar 

  20. X.B. Zhang, Q. Wang, F.B. Chen, Y.J. Wu, Z.Z. Wang, and Q. Wang, Relation Between LPSO Structure and Biocorrosion Behavior of Biodegradable GZ51K Alloy, Mater. Lett., 2015, 138, p 212–215

    Article  Google Scholar 

  21. X.B. Zhang, X.C. He, Y.J. Xue, Z.Z. Wang, and Q. Wang, Microstructure and Corrosion Resistance of as-cast Mg-Nd-Gd-Sr-Zn-Zr Alloys for Biomedical Applications, Mater. Technol., 2014, 29, p 179–187

    Article  Google Scholar 

  22. J.S. Zhang, W.B. Zhang, L.P. Bian, W.L. Cheng, X.F. Niu, C.X. Xu, and S.J. Wu, Study of Mg-Gd-Zn-Zr Alloys with Long Period Stacking Ordered Structures, Mater. Sci. Eng. A, 2013, 585, p 268–276

    Article  Google Scholar 

  23. Y.J. Wu, L.M. Peng, X.Q. Zeng, D.L. Lin, W.J. Ding, and Y.H. Peng, A High Strength Extruded Mg-Gd-Zn-Zr Alloy with Superplasticity, J. Mater. Res., 2009, 24, p 3596–3602

    Article  Google Scholar 

  24. K. Liu, J.H. Zhang, H.Y. Lu, D.X. Tang, L.L. Rokhlin, F.M. Elkin, and J. Meng, Effect of the Long Periodic Stacking Structure and W-phase on the Microstructures and Mechanical Properties of the Mg-8Gd-xZn-0.4Zr Alloys, Mater. Des., 2010, 31, p 210–219

    Article  Google Scholar 

  25. F.M. Lu, A.B. Ma, J.H. Jiang, D.H. Yang, D. Song, Y.C. Yuan, and J. Chen, Effect of Multi-Pass Equal Channel Angular Pressing on Microstructure and Mechanical Properties of Mg97.1Zn1Gd1.8Zr0.1 Alloy, Mater. Sci. Eng. A, 2014, 594, p 330–333

    Article  Google Scholar 

  26. H.Y. Gao, K. Ikeda, T. Morikawa, K. Higashida, and H. Nakashima, Analysis of Kink Boundaries in Deformed Synchronized Long-Period Stacking Ordered Magnesium Alloys, Mater. Lett., 2015, 146, p 30–33

    Article  Google Scholar 

  27. X.H. Shao, Z.Q. Yang, and X.L. Ma, Strengthening and Toughening Mechanisms in Mg-Zn-Y Alloy with a Long Period Stacking Ordered Structure, Acta Mater., 2010, 58, p 4760–4771

    Article  Google Scholar 

  28. X.B. Zhang, Z.X. Ba, Z.Z. Wang, Y.J. Xue, and Q. Wang, Microstructure and Biocorrosion Behaviors of Solution Treated and As-Extruded Mg-2.2Nd-xSr-0.3Zr Alloys, Trans. Nonferrous Met. Soc. China, 2014, 24, p 3797–3803

    Article  Google Scholar 

  29. S. Manivannan, S.P.K. Babu, and S. Sundarrajan, Corrosion Behavior of Mg-6Al-1Zn-xRE Magnesium Alloy with Minor Addition of Yttrium, J. Mater. Eng. Perform., 2015, 24, p 1649–1655

    Article  Google Scholar 

  30. N.T. Kirkland, N. Birbilis, and M.P. Staiger, Assessing the Corrosion of Biodegradable Magnesium Implants: A Critical Review of Current Methodologies and Their Limitations, Acta Biomater., 2012, 8, p 925–936

    Article  Google Scholar 

  31. J.C. Zhou, Q. Li, H.X. Zhang, and F.N. Chen, Corrosion Behaviour of AZ91D Magnesium Alloy in Three Different Physiological Environments, J. Mater. Eng. Perform., 2014, 23, p 181–186

    Article  Google Scholar 

  32. A. Atrens, M. Liu, and N.I.Z. Abidin, Corrosion Mechanism Applicable to Biodegradable Magnesium Implants, Mater. Sci. Eng. B, 2011, 176, p 1609–1636

    Article  Google Scholar 

Download references

Acknowledgment

This project was supported by the National Natural Science Foundation of China (51301089), the Natural Science Foundation of Jiangsu Province (BK20130745), the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA201503), and the Qing Lan Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Q., Ba, Z. et al. Improved Corrosion Resistance of As-Extruded GZ51K Biomagnesium Alloy with High Mechanical Properties by Aging Treatment. J. of Materi Eng and Perform 25, 719–725 (2016). https://doi.org/10.1007/s11665-016-1941-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1941-7

Keywords

Navigation