Skip to main content
Log in

Microstructure-Based RVE Approach for Stretch-Bending of Dual-Phase Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Fracture behavior and micro-failure mechanism in stretch-bending of dual-phase (DP) steels are still unclear. Representative volume elements (RVE) have been proved to be an applicable approach for describing microstructural deformation in order to reveal the micro-failure mechanism. In this paper, 2D RVE models are built. The deformation behavior of DP steels under stretch-bending is investigated by means of RVE models based on the metallographic graphs with particle geometry, distribution, and morphology. Microstructural failure modes under different loading conditions in stretch-bending tests are studied, and different failure mechanisms in stretch-bending are analyzed. The computational results and stress-strain distribution analysis indicate that in the RVE models, the strain mostly occurs in ferrite phase, while martensite phase undertakes most stress without significant strain. The failure is the results of the deformation inhomogeneity between martensite phase and ferrite phase. The various appearance and growth of initial voids are different depending on the bending radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.D. Horvath and J.R. Fekete, International conference on advanced high strength steels for automotive applications, Proceedings, Association for Iron and Steel Technology, 2004

  2. M.Y. Demeri, ASM Handbook: Metalworking: Sheet Forming, vol. 14B. ASM International, Materials Park, 2006

  3. N.K. Balliger and T. Gladman, Work Hardening of Dual-Phase Steels, Met .Sci., 1981, 15, p 95–108

    Article  Google Scholar 

  4. N.J. Kim and A.H. Nakagawa, Effective Grain Size of Dual-Phase Steel, Mater. Sci. Eng., 1986, 83, p 145–149

    Article  Google Scholar 

  5. M. Erdogan, The Effect of New Ferrite Content on the Tensile Fracture Behavior of Dual Phase Steels, J. Mater. Sci., 2002, 37, p 3623–3630

    Article  Google Scholar 

  6. M. Erdogan and R. Priestner, Effect of Martensite Content, its Dispersion, and Epitaxial Ferrite Content on Bauschinger Behavior of Dual Phase Steel, Mater. Sci. Technol. Ser., 2002, 18, p 369–374

    Article  Google Scholar 

  7. S. Sun and M. Pugh, Properties of Thermomechanically Processed Dual-Phase Steels Containing Fibrous Martensite, Mater. Sci. Eng. A, 2002, 335, p 298–308

    Article  Google Scholar 

  8. G. Chatzigeorgiou and N. Charalambakis, Instability Analysis of Non-Homogeneous Materials Under Biaxial Loading, Int. J. Plast., 2005, 21, p 1970–1999

    Article  Google Scholar 

  9. L.M.V. Tigrinho, R.A. Chemin Filho, and P.V.P. Marcondes, Fracture Analysis Approach of DP600 Steel When Subjected to Different Stress/Strain States During Deformation, Int. J. Adv. Manuf. Technol., 2013, 69, p 1017–1024

    Article  Google Scholar 

  10. Z. Marciniak and K. Kuczynski, Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9, p 609–612

    Article  Google Scholar 

  11. Gurson A. Plastic Flow and Fracture Behavior of Ductile Materials in Corporating Void Nucleation, Growth and Coalescence. Ph.D. Thesis, Brown University, 1975

  12. V. Tvergaard, On Localization in Ductile Materials Containing Spherical Voids, Int. J. Fract., 1982, 18, p 237–252

    Google Scholar 

  13. V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall. Mater., 1984, 32, p 157–169

    Article  Google Scholar 

  14. F.M. Al-Abbasi and J.A. Nemes, Predicting the Ductile Failure of DP-Steels Using Micromechanical Modeling of Cells, Int. J. Damage Mech., 2008, 17, p 447–472

    Article  Google Scholar 

  15. M.P. Sklad, Analysis of deformation in the shear and shear-tension tests. Numisheet 2008—Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, 2008, p 91–95

  16. S. Huang, Y.X. Zhao, and C.F. He, Shear Fracture of Advanced High Strength Steels, J. Iron Steel Res. Int., 2014, 21, p 938–944

    Article  Google Scholar 

  17. S.H. Li, J. He, Y.X. Zhao, S. Wang, L. Dong, and R.G. Cui, Theoretical Failure Investigation for Sheet Metals Under Hybrid Stretch-Bending Loadings, Int. J. Mech. Sci., 2015, 104, p 75–90

    Article  Google Scholar 

  18. Y. Bai and T. Wierzbicki, Application of Extended Mohr-Coulomb Criterion to Ductile Fracture, Int. J. Fract., 2010, 161, p 1–20

    Article  Google Scholar 

  19. M. Luo and T. Wierzbicki, Numerical Failure Analysis of a Stretch-Bending Test on Dual-Phase Steel Sheets Using a Phenomenological Fracture Model, Int. J. Solids Struct., 2010, 47, p 3084–3102

    Article  Google Scholar 

  20. Y. Lou and H. Huh, Prediction of Ductile Fracture for Advanced High Strength Steel with a New Criterion: Experiments and Simulation, J. Mater. Process Technol, 2013, 213, p 1284–1302

    Article  Google Scholar 

  21. J. Lian, M. Sharaf, F. Archie, and S. Münstermann, A Hybrid Approach for Modelling of Plasticity and Failure Behaviour of Advanced High-Strength steel Sheets, Int. J. Damage Mech., 2013, 22, p 188–218

    Article  Google Scholar 

  22. J.H. Lian, P.F. Liu, and S. Münstermann, Modeling of Damage and Failure of Dual Phase Steel in Nakajima Test, Key Eng. Mater., 2013, 525, p 69–72

    Google Scholar 

  23. J. Lian, J. Wu, and S. Münstermann, Evaluation of the Cold Formability of High-Strength Low-Alloy Steel Plates with the Modified Bai-Wierzbicki Damage Model, Int. J. Damage Mech., 2015, 24, p 383–417

    Article  Google Scholar 

  24. J.H. Kim, J.H. Sung, K. Piao, and R.H. Wagoner, The Shear Fracture of Dual-Phase Steel, Int. J. Plast., 2011, 27, p 1658–1676

    Article  Google Scholar 

  25. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications, Acta Mater., 2010, 58, p 1152–1211

    Article  Google Scholar 

  26. U. Prahl, S. Papaefthymiou, V. Uthaisangsuk, W. Bleck, J. Sietsma, and S. Van der Zwaag, Micromechanics-Based Modelling of Properties and Failure of Multiphase Steels, Comput Mater. Sci., 2007, 39, p 17–22

    Article  Google Scholar 

  27. V. Uthaisangsuk, U. Prahl, and W. Bleck, Micromechanical Modelling of Damage Behavior of Multiphase Steels, Comput. Mater. Sci., 2008, 43, p 27–35

    Article  Google Scholar 

  28. V. Uthaisangsuk, U. Prahl, and W. Bleck, Stretch-flangeability Characterization of Multiphase Steel Using a Microstructure Based Failure Modelling, Comput. Mater. Sci., 2009, 45, p 617–623

    Article  Google Scholar 

  29. X. Sun, K.S. Choi, W.N. Liu, and M.A. Khaleel, Predicting Failure Modes and Ductility of Dual Phase Steels Using Plastic Strain Localization, Int. J. Plast., 2009, 25, p 1888–1909

    Article  Google Scholar 

  30. X. Sun, K.S. Choi, A. Soulami, W.N. Liu, and M.A. Khaleel, On Key Factors Influencing Ductile Fractures of Dual Phase (DP) Steels, Mater. Sci. Eng. A, 2009, 526, p 140–149

    Article  Google Scholar 

  31. K.S. Choi, W.N. Liu, X. Sun, and M.A. Khaleel, Microstructure-Based Constitutive Modeling of TRIP Steel: Prediction of Ductility and Failure Modes Under Different Loading Conditions, Acta Mater., 2009, 57, p 2592–2604

    Article  Google Scholar 

  32. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size, Metall. Mater. Trans. A, 2012, 43, p 3850–3869

    Article  Google Scholar 

  33. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Modelling the Effect of Microstructural Banding on the Flow Curve Behaviour of Dual-Phase (DP) Steels, Comput. Mater. Sci., 2012, 52, p 46–54

    Article  Google Scholar 

  34. J. Kadkhodapour, A. Butz, S. Ziaei-Rad, and S. Schmauder, A Micro Mechanical Study on Failure Initiation of Dual Phase Steels Under Tension Using Single Crystal Plasticity Model, Int. J. Plast., 2011, 27, p 1103–1125

    Article  Google Scholar 

  35. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, Experimental and Numerical Study on Geometrically Necessary Dislocations and Non-homogeneous Mechanical Properties of the Ferrite Phase in Dual Phase Steels, Acta Mater., 2011, 59, p 4387–4394

    Article  Google Scholar 

  36. S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian, and S. Schmauder, Microstructure Modelling of Dual-Phase Steel Using SEM Micrographs and Voronoi Polycrystal models, Metallogr. Microstruct. Anal., 2013, 2, p 156–169

    Article  Google Scholar 

  37. J. Lian, H. Yang, N. Vajragupta, S. Münstermann, and W. Bleck, A Method to Quantitatively Upscale the Damage Initiation of Dual-Phase Steels Under Various Stress States from Microscale to Macroscale, Comput. Mater. Sci., 2014, 94, p 245–257

    Article  Google Scholar 

  38. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine-and Ultrafine-Grained Ferrite/Martensite Dual-phase Steels and the Effect of Aging, Acta Mater., 2011, 59, p 658–670

    Article  Google Scholar 

  39. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-phase Steels Studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 2010, 527, p 2738–2746

    Article  Google Scholar 

  40. S.K. Pual, Micromechanical Based Modeling of Dual Phase steels: Prediction of Ductility and failure Modes, Comput. Mater. Sci., 2012, 56, p 34–42

    Article  Google Scholar 

  41. A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, Correlation Between 2D and 3D Flow Curve Modelling of DP Steels using a Microstructure-Based RVE Approach, Mater. Sci. Eng. A, 2013, 560, p 129–139

    Article  Google Scholar 

  42. S. Huang, C.F. He, Y.X. Zhao et al., Uniaxial Tension Simulation Using Real Microstructure-based Representative Volume Elements Model of Dual Phase Steel Plate, Procedia Engineering, 2014, 81, p 1384-1389.

    Article  Google Scholar 

  43. R. Rodriguez and I. Gutierrez, Unified Formulation to Predict the Tensile Curves of Steels with Different Microstructures, Mater. Sci. Forum, 2003, 426–432, p 4525–4530

    Article  Google Scholar 

  44. R.K.A. Al-Rub, M. Ettehad, and A.N. Palazotto, Microstructural Modeling of Dual Phase Steel Using a Higher-Order Gradient Plasticity-Damage Model, Int. J. Solids Struct., 2015, 58, p 178–189

    Article  Google Scholar 

  45. S. Huang, Y.X. Zhao, and C.F. He, Stamping Failure Analysis of Advanced High Strength Steel Sheet Based on Non-uniform Local Deformation Through Thickness, NUMISHEET2014, AIP Publishing, 2013, 1567, p 583-586.

    Google Scholar 

  46. S. Sriram, H. Yao, and N. Ramisetti, Development of an Empirical Model to Characterize Fracture Behavior During Forming of Advanced High Strength Steels Under Bending Dominated Conditions, J. Manuf. Sci. E-T ASME, 2012, 134, p 031003

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 51075267, 51375308, 51275296, 51375307 and International cooperation program in science and technology of Ministry of Science and Technology of China under Grant No. 2010DFA72760. The authors are grateful to other colleagues for their help in experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiXi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., He, C. & Zhao, Y. Microstructure-Based RVE Approach for Stretch-Bending of Dual-Phase Steels. J. of Materi Eng and Perform 25, 966–976 (2016). https://doi.org/10.1007/s11665-016-1880-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1880-3

Keywords

Navigation