Skip to main content
Log in

Development of High Performance Magnesium Matrix Nanocomposites Using Nano-SiC Particulates as Reinforcement

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, magnesium-based composites with three different volume percentages of nano-sized SiC particulates (SiCp) reinforcement were fabricated using a simple and inexpensive technique followed by hot extrusion. Microstructural characterization of the materials revealed uniform distribution of nano-size SiCp and obvious grain refinement. The tensile test result indicates a remarkable improvement on the strength for the as-extruded SiCp/AZ31B nanocomposite, while the elongation to fracture was decreased by comparing with the AZ31B alloy. Although, compared with the as-extruded AZ31B alloy, the ductility of the SiCp-reinforced AZ31B nanocomposite is decreased, but the ductility of the present SiCp-reinforced AZ31B nanocomposite is far higher than that of the conventional micron or submicron SiCp-reinforced magnesium matrix composites. It is concluded that, compared with the larger sized (micron or submicron) particles, the addition of nano SiCp in the AZ31B alloy resulted in the best combination of the strength and ductility. An attempt is made in the present study to correlate the effect of presence of nano-SiCp as reinforcement and its increasing amount with the microstructural and mechanical properties of magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.R. Dandekar and Y.C. Shin, Effect of Porosity on the Interface Behavior of an Al2O3-Aluminum Composite: A Molecular Dynamics Study, Compos. Sci. Technol., 2011, 71, p 350–356

    Article  Google Scholar 

  2. X.J. Wang, K. Wu, W.X. Huang, H.F. Zhang, M.Y. Zheng, and D.L. Peng, Study on Fracture Behavior of Particulate Reinforced Magnesium Matrix Composite Using In Situ SEM, Compos. Sci. Technol., 2007, 67, p 2253–2260

    Article  Google Scholar 

  3. X.J. Wang, L. Xu, X.S. Hu, K.B. Nie, K.K. Deng, K. Wu, and M.Y. Zheng, Influences of Extrusion Parameters on Microstructure and Mechanical Properties of Particulate Reinforced Magnesium Matrix Composites, Mater. Sci. Eng. A, 2011, 528, p 6387–6392

    Article  Google Scholar 

  4. K.B. Nie, X.J. Wang, X.S. Hu, Y.W. Wu, K.K. Deng, K. Wu, and M.Y. Zheng, Effect of Multidirectional Forging on Microstructures and Tensile Properties of a Particulate reinforced Magnesium Matrix Composite, Mater. Sci. Eng. A, 2011, 528, p 7133–7139

    Article  Google Scholar 

  5. X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu, K. Wu, Y.Q. Wang, and Y.D. Huang, Processing, Microstructure and Mechanical Properties of Micro-SiC Particles Reinforced Magnesium Matrix Composites Fabricated by Stir Casting Assisted by Ultrasonic Treatment Processing, Mater. Des., 2014, 57, p 638–645

    Article  Google Scholar 

  6. W.L.E. Wong and M. Gupta, Development of Mg/Cu Nanocomposites Using Microwave Assisted Rapid Sintering, Compos. Sci. Technol., 2007, 67, p 1541–1552

    Article  Google Scholar 

  7. S.F. Hassan, Effect of Primary Processing Techniques on the Microstructure and Mechanical Properties of Nano-Y2O3 Reinforced Magnesium Nanocomposites, Mater. Sci. Eng. A, 2011, 528, p 5484–5490

    Article  Google Scholar 

  8. S.F. Hassan and M. Gupta, Development of High Performance Magnesium Nano-composites Using Nano-Al2O3 as Reinforcement, Mater. Sci. Eng. A, 2005, 392, p 163–168

    Article  Google Scholar 

  9. K.B. Nie, X.J. Wang, L. Xu, K. Wu, X.S. Hu, and M.Y. Zheng, Effect of Hot Extrusion on Microstructures and Mechanical Properties of SiC Nanoparticles Reinforced Magnesium Matrix Composite, J. Alloys Compd., 2012, 512, p 355–360

    Article  Google Scholar 

  10. M.J. Shen, X.J. Wang, C.D. Li, M.F. Zhang, X.S. Hu, M.Y. Zheng, and K. Wu, Effect of Bimodal Size SiC Particulates on Microstructure and Mechanical Properties of AZ31B Magnesium Matrix Composites, Mater. Des., 2013, 52, p 1011–1017

    Article  Google Scholar 

  11. M.J. Shen, X.J. Wang, M.F. Zhang, X.S. Hu, M.Y. Zheng, and K. Wu, Fabrication of Bimodal Size SiCp Reinforced AZ31B Magnesium Matrix Composites, Mater. Sci. Eng. A, 2014, 601, p 58–64

    Article  Google Scholar 

  12. K.K. Deng, K. Wu, X.J. Wang, Y.W. Wu, X.S. Hu, M.Y. Zheng, W.M. Gan, and H.G. Brokmeier, Microstructure Evolution and Mechanical Properties of a Particulate Reinforced Magnesium Matrix Composites Forged at Elevated Temperatures, Mater. Sci. Eng. A, 2010, 527, p 1630–1635

    Article  Google Scholar 

  13. K.K. Deng, X.J. Wang, W.M. Gan, Y.W. Wu, K.B. Nie, K. Wu, M.Y. Zheng, and H.G. Brokmeier, Isothermal Forging of AZ91 Reinforced with 10 vol.% Silicon Carbon Particles, Mater. Sci. Eng. A, 2011, 528, p 1707–1712

    Article  Google Scholar 

  14. B. Cicek, H. Ahlatc, and Y. Sun, Wear Behaviours of Pb Added Mg-Al-Si Composites Reinforced with In Situ Mg2Si Particles, Mater. Des., 2013, 50, p 929–935

    Article  Google Scholar 

  15. K.B. Nie, K. Wu, X.J. Wang, K.K. Deng, Y.W. Wu, and M.Y. Zheng, Multidirectional Forging of Magnesium Matrix Composites: Effect on Microstructures and Tensile Properties, Mater. Sci. Eng. A, 2010, 527, p 7364–7368

    Article  Google Scholar 

  16. K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, M.Y. Zheng, and L. Xu, Microstructure and Tensile Properties of micro-SiC Particles Reinforced Magnesium Matrix Composites Produced by Semisolid Stirring Assisted Ultrasonic Vibration, Mater. Sci. Eng. A, 2011, 528, p 8709–8714

    Article  Google Scholar 

  17. K.K. Deng, X.J. Wang, M.Y. Zheng, and K. Wu, Dynamic Recrystallization Behavior During Hot Deformation and Mechanical Properties of 0.2 μm SiCp Reinforced Mg Matrix Composite, Mater. Sci. Eng. A, 2013, 560, p 824–830

    Article  Google Scholar 

  18. W.S. Miller and F.J. Humphreys, Strengthening Mechanisms in Particulate Metal Matrix Composites, Scr. Mater., 1991, 25, p 33–38

    Article  Google Scholar 

  19. M. Paramsothy, Q.B. Nguyen, K.S. Tun, J. Chan, R. Kwok, J.V.M. Kuma, and M. Gupta, Mechanical Property Retention in Remelted Microparticle to Nanoparticle AZ31/Al2O3 Composites, J. Alloys Compd., 2010, 506, p 600–606

    Article  Google Scholar 

  20. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, The Synergistic Ability of Al2O3 Nanoparticles to Enhance Mechanical Response of Hybrid Alloy AZ31/AZ91, J. Alloys Compd., 2011, 509, p 7572–7578

    Article  Google Scholar 

  21. Q.B. Nguyen and M. Gupta, Microstructure and Mechanical Characteristics of AZ31B/Al2O3 Nano-composite with Addition of Ca, J. Compos. Mater., 2009, 43, p 5–17

    Article  Google Scholar 

  22. M.E. Alam, A.M.S. Hamouda, and M. Gupta, Microstructure, Thermal and Mechanical Response of AZ51/Al2O3 Nanocomposite with 2 wt.% Ca Addition, Mater. Des., 2013, 50, p 1–6

    Article  Google Scholar 

  23. M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta, Enhancing Tensile/Compressive Response of Magnesium Alloy AZ31 by Integrating with Al2O3 Nanoparticles, Mater. Sci. Eng. A, 2009, 527, p 162–168

    Article  Google Scholar 

  24. K.K. Deng, K. Wu, Y.W. Wu, K.B. Nie, and M.Y. Zheng, Effect of Submicron Size SiC Particulates on Microstructure and Mechanical Properties of AZ91 Magnesium Matrix Composites, J. Alloys Compd., 2010, 504, p 542–547

    Article  Google Scholar 

  25. M.C. Zhao, F.X. Yin, T. Hanamura, H. Qiu, K. Nagai, and A. Atrens, Relationship Between Yield Strength and Grain Size for a Bimodal Structural Ultrafine-Grained Ferrite/Cementite Steels, Scr. Mater., 2007, 57, p 857–860

    Article  Google Scholar 

  26. J. Koike, Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature, Metall. Mater. Trans. A, 2005, 36, p 1689–1696

    Article  Google Scholar 

  27. M.C. Zhao, Y.L. Deng, and X.M. Zhang, Strengthening and Improvement of Ductility Without Loss of Corrosion Perforation in a Magnesium Alloy by Homogenizing Annealing, Scr. Mater., 2008, 58, p 560–563

    Article  Google Scholar 

  28. S. Sankaranarayanan, R.K. Sabat, S. Jayalakshmi, S. Suwas, and M. Gupta, Effect of Nanoscale Boron Carbide Particle Addition on the Microstructural Evolution and Mechanical Response of Pure Magnesium, Mater. Des., 2014, 56, p 428–436

    Article  Google Scholar 

  29. M.C. Zhao, T. Hanamura, H. Qiu, and K. Yang, Low Absorbed Energy Ductile Dimple Fracture in Lower Shelf Region in an Ultrafine Grained Ferrite/Cementite Steel, Metall. Mater. Trans. A, 2006, 37, p 2897–2990

    Article  Google Scholar 

  30. M.C. Zhao, T. Hanamura, H. Qiu, K. Nagai, and K. Yang, Dependence of Strength and Strength-Elongation Balance on the Volume Fraction of Cementite Particles in Ultrafine Grained Ferrite/Cementite Steels, Scr. Mater., 2006, 54, p 1385–1389

    Article  Google Scholar 

  31. T. Hirano, T. Ohji, and K. Niihara, Effect of Matrix Grain Size on the Mechanical Properties of Si3N4/SiC Nanocomposites Densified with Y2O3, Mater. Lett., 1996, 27, p 53–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. J. Shen or W. F. Ying.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M.J., Ying, W.F., Wang, X.J. et al. Development of High Performance Magnesium Matrix Nanocomposites Using Nano-SiC Particulates as Reinforcement. J. of Materi Eng and Perform 24, 3798–3807 (2015). https://doi.org/10.1007/s11665-015-1707-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1707-7

Keywords

Navigation