Skip to main content
Log in

Microstructure and Phase Transformation in Ti-22Al-(27-x)Nb-xZr Alloys During Continuous Heating

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Phase transformation during heating in homogenized Ti-22Al-(27-x)Nb-xZr (x = 0, 1, 6) alloys is monitored by dilatometry, differential scanning calorimetry (DSC), and detailed metallographic examination. Moreover, the dissolution of α2 into the B 2/β matrix is investigated and discussed. In Ti-22Al-27Nb alloy, the sequence of phase transformation during heating can be concluded as follows: B 2/β → O, B 2/β + α2 → O, B 2/β + O→B 2/β + O + α2, B 2/β + O + α2 → B 2/β + α2, and B 2/β + α2 → B 2/β. For Ti-22Al-21Nb-6Zr alloy, it is B 2/β → α2 + O, O + α2 + B 2/β → B 2/β + α2, and then α2 dissolves into B 2 matrix. There are considerable shifts in the maxima of the transformation rates in B 2/β + O+α2 → B 2/β + α2 and B 2/β + α2 → B 2/β transformed region to the higher temperatures with increasing x value. In the stage of B 2/β + α2 → B 2/β, there is a deceleration of reduction in α2 phase with increasing temperature for Ti-22Al-(27-x)Nb-xZr (x = 0, 1, 6) alloys. And for Ti-22Al-21Nb-6Zr, the dissolution rate of α2 phase is accelerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Banerjee, A.K. Gogia, T.K. Nandi, and V.A. Joshi, A New Ordered Orthorhombic Phase in a Ti3Al-Nb Alloy, Acta Metall., 1988, 36, p 871–882

    Article  Google Scholar 

  2. J. Kumpfert, Intermetallic Alloys Based on Orthorhombic Titanium Aluminide, Adv. Eng. Mater., 2001, 3, p 851–864

    Article  Google Scholar 

  3. J. Jia, K. Zhang, L. Liu, and F. Wu, Hot Deformation Behavior and Processing Map of a Powder Metallurgy Ti-22Al-25Nb Alloy, J. Alloys Compd., 2014, 600, p 215–221

    Article  Google Scholar 

  4. Z.L. Lei, Z.J. Dong, Y.B. Chen, J. Zhang, and R.C. Zhu, Microstructure and Tensile Properties of Laser Beam Welded Ti-22Al-27Nb Alloys, Mater. Design., 2013, 46, p 151–156

    Article  Google Scholar 

  5. J. Shen and A.H. Feng, Recent Advances on Microstructural Controlling and Hot Forming of Ti2AlNb-based Alloys, Acta Metall. Sin., 2013, 49, p 1286–1294

    Article  Google Scholar 

  6. C. Xue, W.D. Zeng, W. Wang, X.B. Liang, and J.W. Zhang, Coarsening Behavior of Lamellar Orthorhombic Phase and Its Effect on Tensile Properties for the Ti-22Al-25Nb Alloy, Mat. Sci. Eng. A-struct, 2014, 611, p 320–325

    Article  Google Scholar 

  7. S. Emura, A. Araoka, and M. Hagiwara, B 2 Grain Size Refinement and Its Effect on Room Temperature Tensile Properties of a Ti-22Al-27Nb Orthorhombic Intermetallic Alloy, Scr. Mater., 2003, 48, p 629–634

    Article  Google Scholar 

  8. C.J. Cowen and C.J. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti-21Al-29Nb (at.%) Orthorhombic + B 2 Alloy, Intermetallics, 2006, 14(issue), p 412–422

    Article  Google Scholar 

  9. P. Lin, Z. He, S. Yuan, J. Shen, Y. Huang, and X. Liang, Instability of the O-Phase in Ti-22Al-25Nb Alloy during Elevated-Temperature Deformation, J. Alloy. Compd., 2013, 578, p 96–102

    Article  Google Scholar 

  10. W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Quantitative Analysis of the Effect of Heat Treatment on Microstructural Evolution and Microhardness of an Isothermally Forged Ti-22Al-25Nb (at.%) Orthorhombic Alloy, Intermetallics, 2014, 45, p 29–37

    Article  Google Scholar 

  11. C. Boehlert, B. Majumdar, V. Seetharaman, and D. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O + Bcc Orthorhombic Alloys, Titanium’95, Vol 1, P.A. Blenklnsop, W.J. Evans, and H.M. Flower, Ed., The University Press, Cambridge, UK, 1996, p 372–379

    Google Scholar 

  12. A. Li, G. Fan, R. Chen, Z. Tan and L. Gen. A Method of Fabricating Ti2AlNb Alloys by Vacuum Pressure Infiltration, 2014, Patent, CN 103710554.

  13. C. Leyens and H. Gedanitz, Long-term Oxidation of Orthorhombic Alloy Ti-22Al-25Nb in Air between 650 and 800°C, Scr. Mater., 1999, 41, p 901–906

    Article  Google Scholar 

  14. L. Germann, D. Banerjee, J.Y. Guedou, and J.L. Strudel, Effect of Composition on the Mechanical Properties of Newly Developed Ti2AlNb-Based Titanium Aluminide, Intermetallics, 2005, 13, p 920–924

    Article  Google Scholar 

  15. O.G. Khadzhieva, A.G. Illarionov, and A.A. Popov, Effect of Aging on Structure and Properties of Quenched Alloy Based on Orthorhombic Titanium Aluminide Ti2AlNb, Phys. Met. Metallogr., 2014, 115, p 12–20

    Article  Google Scholar 

  16. C. Xue, W.D. Zeng, W. Wang, X.B. Liang, and J.W. Zhang, The Enhanced Tensile Property by Introducing Bimodal Size Distribution of Lamellar O for O + B 2 Ti2AlNb Based Alloy, Mat. Sci. Eng. A-struct, 2013, 587, p 54–60

    Article  Google Scholar 

  17. C. Xue, W. Zeng, B. Xu, X. Liang, J. Zhang, and S. Li, B 2 Grain Growth and Particle Pinning Effect of Ti-22Al-25Nb Orthorhombic Intermetallic Alloy During Heating Process, Intermetallics, 2012, 29, p 41–47

    Article  Google Scholar 

  18. W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Microstructural Evolution, Creep, and Tensile Behavior of a Ti-22Al-25Nb (at%) Orthorhombic Alloy, Mat. Sci. Eng. A Struct., 2014, 603, p 176–184

    Article  Google Scholar 

  19. Y.X. Wang, K.F. Zhang, and B.Y. Li, Microstructure and High Temperature Tensile Properties of Ti-22Al-25Nb Alloy Prepared by Reactive Sintering with Element Powders, Mat. Sci. Eng. A-Struct., 2014, 608, p 229–233

    Article  Google Scholar 

  20. C.J. Boehlert, The Phase Evolution and Microstructural Stability of an Orthorhombic Ti-23Al-27Nb Alloy, J. Phase Equilib., 1999, 20, p 101–108

    Article  Google Scholar 

  21. A. Grajcar, W. Zalecki, P. Skrzypczyk, A. Kilarski, A. Kowalski, and S. Kołodziej, Dilatometric Study of Phase Transformations in Advanced High-strength Bainitic Steel, J. Therm. Anal. Calorim., 2014, 118, p 739–748

    Article  Google Scholar 

  22. Y. Liu, F. Sommer, and E. Mittemeijer, Abnormal Austenite–Ferrite Transformation Behaviour in Substitutional Fe-based Alloys, Acta Mater., 2003, 51, p 507–519

    Article  Google Scholar 

  23. M.I. Daoudi, A. Triki, A. Redjaimia, and C. Yamina, The Determination of the Activation Energy Varying with the Precipitated Fraction of β″ Metastable Phase in an Al-Si-Mg Alloy Using Non-Isothermal Dilatometry, Thermochim. Acta, 2014, 577, p 5–10

    Article  Google Scholar 

  24. C. Boehlert, B. Majumdar, V. Seetharaman, and D. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O + Bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30, p 2305–2323

    Article  Google Scholar 

  25. W. Sha and Z. Guo, Phase Evolution of Ti–6Al–4V during Continuous Heating, J. Alloy. Compd., 1999, 290, p L3–L7

    Article  Google Scholar 

  26. Q. Hui, X.Y. Xue, H.C. Kou, M.J. Lai, B. Tang, and J.S. Li, Kinetics of the Omega Phase Transformation of Ti-7333 Titanium Alloy During Continuous Heating, J. Mater. Sci., 2013, 48, p 1966–1972

    Article  Google Scholar 

  27. S.V. Divinski, C. Herzig, and C. Klinkenberg, Tracer Diffusion of Niobium and Titanium in Binary and Ternary Titanium Aluminides, J. Phase Equilib. Diff., 2005, 26, p 452–457

    Article  Google Scholar 

  28. R. Perez, H. Nakajima, and F. Dyment, Diffusion in α-Ti and Zr, Mater. Trans., 2003, 44, p 2–13

    Article  Google Scholar 

  29. Y. Hao, D. Xu, Y. Cui, R. Yang, and D. Li, The Site Occupancies of Alloying Elements in TiAl and Ti3Al Alloys, Acta Mater., 1999, 47, p 1129–1139

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the financial supports from the National Basic Research Program of China (2011CB605503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiebang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, W., Li, J., Zhang, T. et al. Microstructure and Phase Transformation in Ti-22Al-(27-x)Nb-xZr Alloys During Continuous Heating. J. of Materi Eng and Perform 24, 3951–3957 (2015). https://doi.org/10.1007/s11665-015-1659-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1659-y

Keywords

Navigation