Skip to main content
Log in

Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Synergistic hydrogen-bonded interaction of alkyl benzimidazoles and 1,2,3-benzotrizole and its corrosion protection properties on mild steel in hydrochloric acid at different temperatures have been studied using polarization, EIS, adsorption, surface studies, and computational methods. The extent of synergistic interaction increases with temperature. Quantum chemical approach is used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect, and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to some parameters, such as total energy, E HOMO, E LUMO, and gap energy (ΔE). 1,2,3-Benzotrizole interacts with benzimidazoles derivatives up to a bond length of approximately 1.99 Å. This interaction represents the formation of a hydrogen bond between the 1,2,3-benzotrizole and benzimidazoles. This synergistic interaction of 1,2,3-benzotrizole and benzimidazole derivatives offers extended inhibition efficiency toward mild steel in hydrochloric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Xu, W. Yang, Y. Liu, X. Yin, W. Gong, and Y. Chen, Experimental and Theoretical Evaluation of Two Pyridinecarboxaldehyde Thiosemicarbazone Compounds as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution, Corros. Sci., 2014, 78, p 260–268

    Article  Google Scholar 

  2. R.A. Prabhu, T.V. Venkatesha, A.V. Shanbhag, B.M. Praveen, G.M. Kulkarni, and R.G. Kalkhambkar, Quinol-2-thione Compounds as Corrosion Inhibitors for Mild Steel in Acid Solution, Mater. Chem. Phys., 2008, 108, p 283–289

    Article  Google Scholar 

  3. K. Mallaiya, R. Subramaniam, S.S. Srikandan, S. Gowri, N. Rajasekaran, and A. Selvaraj, Electrochemical Characterization of the Protective Film Formed by the Unsymmetrical Schiff’s Base on the Mild Steel Surface in Acid Media, Electrochim. Acta., 2011, 56, p 3857–3863

    Article  Google Scholar 

  4. D.D.N. Singh, T.B. Singh, and B. Gaur, The Role of Metal Cations in Improving the Inhibitive Performance of Hexamine on the Corrosion of Steel in Hydrochloric Acid Solutions, Corros. Sci., 1995, 37, p 1005–1019

    Article  Google Scholar 

  5. X.H. Li, S.D. Deng, H. Fu, and T.H. Li, Adsorption and Inhibition Effect of 6-Benzylaminopurine on Cold Rolled Steel in 1.0 M HCl, Electrochim. Acta., 2009, 54, p 4089–4098

    Article  Google Scholar 

  6. A. Doner, E.A. Sahin, G. Kardas, and O. Serindag, Investigation of Corrosion Inhibition Effect of 3-[(2-Hydroxy-benzylidene)-amino]-2-thioxo-thiazolidin-4-one on Corrosion of Mild Steel in the Acidic Medium, Corros. Sci., 2013, 66, p 278–284

    Article  Google Scholar 

  7. M.A. Hegazy, A.M. Hasan, M.M. Emara, M.F. Bakr, and A.H. Youssef, Evaluating Four Synthesized SCHIFF Bases as Corrosion Inhibitors on the Carbon Steel in 1 M Hydrochloric Acid, Corros. Sci., 2012, 65, p 67–76

    Article  Google Scholar 

  8. M. Mahdavian and S. Ashhari, Corrosion Inhibition Performance of 2-Mercaptobenzimidazole and 2-Mercaptobenzoxazole Compounds for Protection of Mild Steel in Hydrochloric Acid Solution, Electrochim. Acta., 2010, 55, p 1720–1724

    Article  Google Scholar 

  9. G. Avci, Corrosion Inhibition of Indole-3-acetic Acid on Mild Steel in 0.5 M HCl, Colloids Surf. A, 2008, 317, p 730–736

    Article  Google Scholar 

  10. A. Kokalj, Is the Analysis of Molecular Electronic Structure of Corrosion Inhibitors Sufficient to Predict the Trend of Their Inhibition Performance, Electrochim. Acta., 2010, 56, p 745–755

    Article  Google Scholar 

  11. M.M. Antonijevic and M.B. Petrovic, Copper Corrosion Inhibitors. A Review, Int. J. Electrochem. Sci., 2008, 3, p 1–28

    Google Scholar 

  12. J.O. Bockris and A.K.N. Reddy, Modern Electrochemistry, 2nd ed., Kluwer Academic/Plenum Publishers, New York, 2000

    Google Scholar 

  13. V. Sastri, Corrosion Inhibition Mechanisms, John Wiley & Sons Inc, Hoboken, NJ, 2011

    Google Scholar 

  14. A. Kosari, M.H. Moayed, A. Davoodi, R. Parvizi, M. Momeni, H. Eshghi, and H. Moradi, Electrochemical and Quantum Chemical Assessment of Two Organic Compounds from Pyridine Derivatives as Corrosion Inhibitors for Mild Steel in HCl Solution Under Stagnant Condition and Hydrodynamic Flow, Corros. Sci., 2014, 78, p 138–150

    Article  Google Scholar 

  15. M.A. Quraishi, F.A. Ansari, and D. Jamal, Thiourea Derivatives as Corrosion Inhibitors for Mild Steel in Formic Acid, Mater. Chem. Phys., 2002, 77, p 687–690

    Article  Google Scholar 

  16. A.M. Fekry and R.R. Mohamed, Acetyl Thiourea Chitosan as an Eco-friendly Inhibitor for Mild Steel in Sulphuric Acid Medium, Electrochim. Acta., 2010, 55, p 1933–1939

    Article  Google Scholar 

  17. R. Agrawal and T.K.G. Namboodhiri, The Inhibition of Sulphuric Acid Corrosion of 410 Stainless Steel by Thioureas, Corros. Sci., 1990, 30, p 37–52

    Article  Google Scholar 

  18. V.V. Torres, R.S. Amado, C.F. de Sa, T.L. Fernandez, C.A.S. Riehl, A.G. Torres, and E.D. Elia, Inhibitory Action of Aqueous Coffee Ground Extracts on the Corrosion of Carbon Steel in HCl Solution, Corros. Sci., 2011, 53, p 2385–2392

    Article  Google Scholar 

  19. K.F. Khaled, Experimental, Density Function Theory Calculations and Molecular Dynamics Simulations to Investigate the Adsorption of Some Thiourea Derivatives on Iron Surface in Nitric Acid Solutions, Appl. Surf. Sci., 2010, 256, p 6753–6763

    Article  Google Scholar 

  20. K.F. Khaled, Application of Electrochemical Frequency Modulation for Monitoring Corrosion and Corrosion Inhibition of Iron by Some Indole Derivatives in Molar Hydrochloric Acid, Mater. Chem. Phys., 2008, 112, p 290–300

    Article  Google Scholar 

  21. J. Alijourani, K. Raessi, and M.A. Golozar, Benzimidazole and Its Derivatives as Corrosion Inhibitors for Mild Steel in 1 M HCl Solution, Corros. Sci., 2009, 51, p 1836–1843

    Article  Google Scholar 

  22. E.E. Ebenso, Synergistic Effect of Halide Ions on the Corrosion Inhibition of Aluminium in H2SO4 Using 2-Acetylphenothiazine, Mater. Chem. Phys., 2003, 79, p 58–70

    Article  Google Scholar 

  23. F. Bentiss, M. Lagrenee, M. Traisnel, and J.C. Hornez, The Corrosion Inhibition of Mild Steel in Acidic Media by a New Triazole Derivative, Corros. Sci., 1999, 41, p 789–803

    Article  Google Scholar 

  24. M.G. Hosseini, H. Tavakoli, and T. Shahrabi, Synergism in Copper Corrosion Inhibition by Sodium Dodecylbenzenesulphonate and 2-Mercaptobenzoimidazole, J. Appl. Electrochem., 2008, 38, p 1629–1636

    Article  Google Scholar 

  25. S.F. Mertens, C. Xhoffer, B.C. De Cooman, and E. Temerman, Short-Term Deterioration of Polymer-Coated 55% Al-Zn—Part 1: Behavior of Thin Polymer Films, Corrosion, 1997, 53, p 381–387

    Article  Google Scholar 

  26. K. Ramya and A. Joseph, Dependence of Temperature on the Corrosion Protection Properties of Vanillin and Its Derivatives, HMATD, Towards Copper in Nitric Acid. Theor. Electro Anal. Stud. Doi: 10.1007/s11164-013-1254-5

  27. W.J. Hehre, L. Radom, P.V.R. Schleyer, and A.J. Pople, Ab initio Molecular Orbital Theory, Wiley-Interscience, New York, 1986

    Google Scholar 

  28. J.F. Janak, Proof that δE/δni = ε in Density Functional Theory, Phys. Rev. B., 1978, 18, p 7138–7165

    Article  Google Scholar 

  29. R. Stowasser and R. Hoffmann, What Do the Kohn−Sham Orbitals and Eigenvalues Mean?, J. Am. Chem. Soc., 1999, 121, p 3414–3420

    Article  Google Scholar 

  30. A.E. Reed, L.A. Curtiss, and F. Weinhold, Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chem. Rev., 1988, 88, p 899–926

    Article  Google Scholar 

  31. R.G. Pearson, Absolute Electronegativity and Hardness: Application to Inorganic Chemistry, Inorg. Chem., 1988, 27, p 734–740

    Article  Google Scholar 

  32. R.G. Parr and W. Yang, Density Functional Approach to the Frontier—Electron Theory of Chemical Reactivity, J. Am. Chem. Soc., 1984, 106, p 4049–4050

    Article  Google Scholar 

  33. K.F. Khaled, Studies of Iron Corrosion Inhibition Using Chemical, Electrochemical and Computer Simulation Techniques, Electrochim. Acta., 2010, 55, p 6523–6532

    Article  Google Scholar 

  34. W. Yang and W.J. Mortier, The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines, J. Am. Chem. Soc., 1986, 108, p 5708–5711

    Article  Google Scholar 

  35. M. Mobin, M. Parveen, and M.Z.A. Rafiquee, Synergistic Influence of Sodium Dodecyl Sulfate and Cetyltrimethyl Ammonium Bromide on the Corrosion Inhibition Behavior of l-Methionine on Mild Steel in Acidic Medium, Arab. J. chem., Doi: 10.1016/j.arabjc.2013.04.006

  36. I. Dehri, H. Sozusag˘lam, and M. Erbil, EIS Study of the Effect of High Levels of NH3 on the Deformation of Polyester-Coated Galvanised Steel at Different Relative Humidities, Prog. Org. Coat., 2003, 48, p 118–123

    Article  Google Scholar 

  37. F. Bentiss, M. Lebrini, and M. Lagrenee, Benzimidazole and Its Derivatives as Corrosion Inhibitors for Mild Steel in 1 M HCl Solution, Corros. Sci., 2005, 47, p 2915–2931

    Article  Google Scholar 

  38. M. El Azhar, B. Mernari, M. Traisnel, F. Bentiss, and M. Lagrenee, Corrosion Inhibition of Mild Steel by the New Class of Inhibitors [2,5-Bis(n-pyridyl)-1,3,4-thiadiazoles] in Acidic Media, Corros. Sci., 2001, 43, p 2229–2238

    Article  Google Scholar 

  39. A. Yurt, A. Balaban, S.U. Kandemir, G. Bereket, and B. Erk, Investigation on Some Schiff Bases as HCl Corrosion Inhibitors for Carbon Steel, Mater. Chem. Phys., 2004, 85, p 420–426

    Article  Google Scholar 

  40. B.M. Mistry and S. Jauhari, Synthesis and Evaluation of Some Quinoline Schiff Bases as a Corrosion Inhibitor for Mild Steel in 1 N HCl, Res. Chem. Intermed., 2013, 39, p 1049–1068

    Article  Google Scholar 

  41. I. Ahamad, R. Prasad, and M.A. Quraishi, Inhibition of Mild Steel Corrosion in Acid Solution by Pheniramine Drug: Experimental and Theoretical Study, Corros. Sci., 2010, 52, p 3033–3041

    Article  Google Scholar 

  42. I. Ahamad, R. Prasad, and M.A. Quraishi, Experimental and Quantum Chemical Characterization of the Adsorption of Some Schiff Base Compounds of Phthaloyl Thiocarbohydrazide on the Mild Steel in Acid Solutions, Mater. Chem. Phys., 2010, 124, p 1155–1165

    Article  Google Scholar 

  43. E. McCafferty, Introduction to Corrosion Science, Springer, New York, 2010

    Book  Google Scholar 

  44. E. McCafferty and N. Hackerman, Double Layer Capacitance of Iron and Corrosion Inhibition with Polymethylene Diamines, J. Electrochem. Soc., 1972, 119, p 146–154

    Article  Google Scholar 

  45. A.K. Singh and M.A. Quraishi, Effect of Cefazolin on the Corrosion of Mild Steel in HCl Solution, Corros. Sci., 2010, 52, p 152–160

    Article  Google Scholar 

  46. A. Kosari, M. Momeni, R. Parvizi, M. Zakeri, M.H. Moayed, A. Davoodi, and H. Eshghi, Theoretical and Electrochemical Assessment of Inhibitive Behavior of Some Thiophenol Derivatives on Mild Steel in HCl, Corros. Sci., 2011, 53, p 3058–3067

    Article  Google Scholar 

  47. E.E. Oguzie, Y. Li, and F.H. Wang, Effect of 2-Amino-3-mercaptopropanoic Acid (Cysteine) on the Corrosion Behaviour of Low Carbon Steel in Sulphuric Acid, Electrochim. Acta., 2007, 53, p 909–914

    Article  Google Scholar 

  48. N.A. Negm, F.M. Ghuiba, and S.M. Tawfik, Novel Isoxazolium Cationic Schiff Base Compounds as Corrosion Inhibitors for Carbon Steel in Hydrochloric Acid, Corros. Sci., 2011, 53, p 3566–3575

    Article  Google Scholar 

  49. F. Bentiss, M. Traisnel, and M. Lagrenee, The Substituted 1,3,4-Oxadiazoles: A New Class of Corrosion Inhibitors of Mild Steel in Acidic Media, Corros. Sci., 2000, 42, p 127–146

    Article  Google Scholar 

  50. E.S. Ferreira, C. Giancomelli, F.C. Giacomelli, and A. Spinelli, Evaluation of the Inhibitor Effect of l-Ascorbic Acid on the Corrosion of Mild Steel, Mater. Chem. Phys., 2004, 83, p 129–134

    Article  Google Scholar 

  51. F. Zhang, Y. Tang, Z. Cao, W. Jing, Z. Wu, and Y. Chen, Performance and Theoretical Study on Corrosion Inhibition of 2-(4-Pyridyl)-benzimidazole for Mild Steel in Hydrochloric Acid, Corros. Sci., 2012, 61, p 1–9

    Article  Google Scholar 

  52. P. Zhao, Q. Liang, and Y. Li, Electrochemical, SEM/EDS and Quantum Chemical Study of Phthalocyanines as Corrosion Inhibitors for Mild Steel in 1 mol/L HCl, Appl. Surf. Sci., 2005, 252, p 1596–1607

    Article  Google Scholar 

  53. I. Ahamad, R. Prasad, and M.A. Quraishi, Thermodynamic, Electrochemical and Quantum Chemical Investigation of Some Schiff Bases as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solutions, Corros. Sci., 2010, 52, p 933–942

    Article  Google Scholar 

  54. G. Gao and C. Liang, Electrochemical and DFT Studies of β-Amino-Alcohols as Corrosion Inhibitors for Brass, Electrochim. Acta., 2007, 52, p 4554–4559

    Article  Google Scholar 

  55. S.K. Rajak, N. Islam, and D.C. Ghosh, Modeling of the Chemico-physical Process of Protonation of Molecules Entailing Some Quantum Chemical Descriptors, J. Quantum Inf. Sci., 2011, 1, p 87–95

    Article  Google Scholar 

  56. E.E. Ebenso, D.A. Isabirye, and N.O. Eddy, Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium, Int. J. Mol. Sci., 2010, 11, p 2473–2498

    Article  Google Scholar 

  57. K. Aramaki and N. Hackerman, Inhibition Mechanism of Medium-Sized Polymethyleneimine, J. Electrochem. Soc., 1969, 116, p 568–574

    Article  Google Scholar 

  58. M.K. Pavithr, T.V. Venkatesh, K. Vathsal, and K.O. Nayan, Synergistic Effect of Halide Ions on Improving Corrosion Inhibition Behaviour of Benzisothiozole-3-piperizine Hydrochloride on Mild Steel in 0.5 M H2SO4 Medium, Corros. Sci., 2010, 52, p 3811–3819

    Article  Google Scholar 

  59. J.M. Cases and F. Villieras, Thermodynamic Model of Ionic and Nonionic Surfactants Adsorption-Abstraction on Heterogeneous Surfaces, Langmuir, 1992, 8, p 1251–1264

    Article  Google Scholar 

  60. G. Moretti, G. Quartarone, A. Tassan, and A. Zingales, 5-Amino- and 5-Chloro-indole as Mild Steel Corrosion Inhibitors in 1 N Sulphuric Acid, Electrochim. Acta., 1996, 41, p 1971–1980

    Article  Google Scholar 

  61. F. Bentiss, M. Traisnel, and M. Lagrenee, Influence of 2,5-Bis(4-dimethylaminophenyl)-1,3,4-thiadiazole on Corrosion Inhibition of Mild Steel in Acidic Media, J. Appl. Electrochem., 2001, 31, p 41–48

    Article  Google Scholar 

  62. M.A. Quraishi, I. Ahamed, and R. Prasad, Adsorption and Inhibitive Properties of Some New Mannich Bases of Isatin Derivatives on Corrosion of Mild Steel in Acidic Media, Corros. Sci., 2010, 52, p 1472–1481

    Article  Google Scholar 

  63. K. Parameswari, S. Rekha, S. Chitra, and E. Kayalvizhy, Study on the Inhibition of Mild Steel Corrosion by Benzoisoxazole and Benzopyrazole Derivatives in H2SO4 Medium, Port. Electrochim. Acta., 2010, 28, p 189–201

    Article  Google Scholar 

  64. N.M. Guan, L. Xueming, and L. Fei, Synergistic Inhibition Between o-Phenanthroline and Chloride Ion on Cold Rolled Steel Corrosion in Phosphoric Acid, Mater. Chem. Phys., 2004, 86, p 59–68

    Article  Google Scholar 

  65. A.J.A. Nasser and M.A. Sathiq, Comparative study of N-[(4-Methoxyphenyl) (morpholin-4-yl)methyl]acetamide (MMPA) and N-[Morpholin-4-yl(phenyl)methyl]acetamide (MPA) as Corrosion Inhibitors for Mild Steel in Sulfuric Acid Solution, Arab. J. Chem., Doi:10.1016/j.arabjc.2012.07.032

  66. S.A.M. Refaey, F. Taha, and A.M. Abd El-Malak, Inhibition of Stainless Steel Pitting Corrosion in Acidic Medium by 2-Mercaptobenzoxazole, Appl. Surf. Sci., 2004, 236, p 175–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Joseph.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, K., Mohan, R. & Joseph, A. Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid. J. of Materi Eng and Perform 23, 4089–4101 (2014). https://doi.org/10.1007/s11665-014-1183-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1183-5

Keywords

Navigation