Skip to main content

Advertisement

Log in

Copper-Filled Electrically Conductive Adhesives with Enhanced Shear Strength

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the effects of diethyl carbitol (diluent) and tertiary amines on the electrical, mechanical, and rheological properties of the Cu-filled polyurethane-based electrically conductive adhesives (ECAs) were investigated. Significant difference could be observed in the electrical resistivity and shear strength of ECA prepared with different amount of diethyl carbitol. Reduced electrical resistivity was found in ECAs prepared with addition of tertiary amines, but no obvious change was observed in the shear strength of the ECA joint. Rheological property of the ECA paste was investigated in order to understand the correlation of the viscosity of ECA paste and electrical resistivity and shear strength of ECA joint. Results revealed that decrease in viscosity of the ECA paste reduced electrical resistivity and enhanced shear strength of ECA joint. A Cu-filled polyurethane-based ECA with considerably low electrical resistivity at the magnitude order range of 10−3 Ω cm, and significantly high shear strength (above 17 MPa) could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.H. Lau, C.P. Wong, N.C. Lee, and S.W. Rickylee, Electronics Manufacturing with Lead-Free, Halogen-Free & Conductive-Adhesive Materials, Chap. 17, McGraw-Hill, New York, 2003

  2. Y.S. Lin and S.S. Chiu, Electrical Properties of Conductive Adhesives as Affected by Particle Compositions, Particle Shapes and Oxidizing Temperatures of Copper Powders in a Polymer Matrix, J. Appl. Polym. Sci., 2004, 93(5), p 2045–2053

    Article  Google Scholar 

  3. L.N. Ho, H. Nishikawa, and T. Takemoto, Effect of Different Copper Fillers on the Electrical Resistivity of Conductive Adhesives, J. Mater. Sci. Mater. Electron., 2011, 22(5), p 538–544

    Article  Google Scholar 

  4. C.F. Goh, H. Yu, S.S. Yong, S.G. Mhaisalkar, F.Y.C. Boey, and P.S. Teo, The Effect of Annealing on the Morphologies and Conductivities of Sub-micrometer Sized Nickel Particles Used for Electrically Conductive Adhesive, Thin Solid Films, 2006, 504(1–2), p 416–420

    Article  Google Scholar 

  5. I. Novák, I. Krupa, and I. Chodák, Investigation of the Correlation Between Electrical Conductivity and Elongation at Break in Polyurethane-Based Adhesives, Syn. Met., 2002, 131(1–3), p 93–98

    Article  Google Scholar 

  6. L.-N. Ho and H. Nishikawa, Surfactant-Free Synthesis of Copper Particles for Electrically Conductive Adhesive Application, J. Electron. Mater., 2012, 41(9), p 2527–2532

    Article  Google Scholar 

  7. L.-N. Ho, T.F. Wu, H. Nishikawa, T. Takemoto, K. Miyake, M. Fujita, and K. Ota, Electrical Reliability of Different Alloying Content on Copper Alloy Fillers in Electrically Conductive Adhesives, J. Mater. Sci. Mater. Electron., 2011, 22(7), p 735–740

    Article  Google Scholar 

  8. L.-N. Ho, T.F. Wu, H. Nishikawa, and T. Takemoto, Electrical Properties of Pre-alloyed Cu-P Containing Electrically Conductive Adhesive, J. Adhes., 2010, 86(8), p 807–815

    Article  Google Scholar 

  9. K. Frisch and S.L. Reegen, Advances in Polyurethane Science and Technology, Vol 1–9, Technomic, Westport, 1984

    Google Scholar 

  10. Z. Wirpsza, Polyurethanes—Chemistry, Technology and Applications, PTR Prentice Hall, London, 1993

    Google Scholar 

  11. S.T. Jitendra, T.A. Adekunle, and K. Dmitri, Bio-based Nanocomposites: An Alternative to Traditional Composites, J. Tech. Stud., 2009, 35, p 25–32

    Google Scholar 

  12. A.K. Singh, D.S. Mehra, U.K. Niyogi, S. Sabharwal, J. Swiderska, Z. Czech, and R.K. Khandal, Effect of Crosslinkers on Adhesion Properties of Electron Beam Curable Polyurethane Pressure Sensitive Adhesive, Int. J. Adhes. Adhes., 2013, 41, p 73–79

    Article  Google Scholar 

  13. W.N. Sivak, I.F. Pollack, S. Petoud, W.C. Zamboni, J. Zhang, and E.J. Beckman, Catalyst-Dependent Drug Loading of LDI–Glycerol Polyurethane Foams Leads to Differing Controlled Release Profiles, Acta Biomater., 2008, 4(5), p 1263–1274

    Article  Google Scholar 

  14. M. Vratsanos, Polyurethane Catalysts, Polymeric Materials Encyclopedia, J.C. Salamone, Ed., CRC Press, New York, 1996, p 6947–6957

    Google Scholar 

  15. A.L. Silva and J.C. Bordado, Recent Developments in Polyurethane Catalysis: Catalytic Mechanisms Review, Catal. Rev. Sci. Eng., 2004, 46(1), p 31–51

    Article  Google Scholar 

  16. C. Yang, M.M.F. Yuen, B. Gao, Y. Ma, and C.P. Wong, Investigation of a Biocompatible Polyurethane-Based Isotropically Conductive Adhesive for UHF RFID Tag Antennas, J. Elect. Mater., 2011, 40(1), p 78–84

    Article  Google Scholar 

  17. I. Novák, I. Krupa, and I. Chodák, Relation Between Electrical and Mechanical Properties in Polyurethane/Carbon Black Adhesives, J. Mater. Sci. Lett., 2002, 21(13), p 1039–1041

    Article  Google Scholar 

  18. L.-N. Ho and H. Nishikawa, Influence of Post-curing and Coupling Agents on Polyurethane Based Copper Filled Electrically Conductive Adhesives, J. Mater. Sci. Mater. Electron., 2013, 24(6), p 2077–2081

    Article  Google Scholar 

  19. Z.N. Medved, Y.V. Aleksandrova, L.D. Krotova, and O.G. Tarakanov, The Activity of Tertiary Amines in Polyurethane Syntheses, Polym. Sci. U.S.S.R., 1976, 18(6), p 1471–1475

    Article  Google Scholar 

  20. J.W. Baker and J.B. Holdsworth, The Mechanism of Aromatic Side-chain Reactions with Special Reference to the Polar Effects of Substituents. Part XIII. Kinetic Examination of the Reaction of Aryl Isocyanates with Methyl Alcohol, J. Chem. Soc., 1947, 1947, p 713–726

    Article  Google Scholar 

  21. J.W. Baker, M.M. Davies, and J.J. Gaunt, The Mechanism of the Reaction of aryl Isocyanates with Alcohols and Amines Part IV The Evidence of Infra-Red Absorption Spectra Regarding Alcohol–Amine Association in the Base-Catalysed Reaction of Phenyl Isocyanate with Alcohols, J. Chem. Soc., 1949, p 24–27.

  22. A. Farkas and P.F. Strohm, Mechanism of the Amine-Catalyzed Reaction of Isocyanates with Hydroxyl Compounds, Ind. Eng. Chem. Fund., 1965, 4(1), p 32–38

    Article  Google Scholar 

  23. K.C. Frisch, S.L. Reegen, W.V. Floutz, and J.P. Oliver, Complex Formation Between Catalysts, Alcohols, and Isocyanates in the Preparation of Urethanes, J. Polym. Sci. A, 1967, 5(1), p 35–42

    Article  Google Scholar 

  24. A.E. Oberth and R.S. Bruenner, The Effect of Hydrogen Bonding on the Kinetics of the Urethane Reaction, J. Phys. Chem., 1968, 72(3), p 845–855

    Article  Google Scholar 

  25. I.T. Amr, A. Al-Amer, P.S. Thomas, M. Al-Harthi, S.A. Girei, R. Sougrat, and M. Ali Atieh, Effect of Acid Treated Carbon Nanotubes on Mechanical, Rheological and Thermal Properties of Polystyrene Nanocomposites, Compos. B, 2011, 42(6), p 1554–1561

    Article  Google Scholar 

  26. W.R. Schowalter, Mechanics of Non-newtonian Fluids, Pergamon Press, Oxford, 1978

    Google Scholar 

  27. F. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, and K.I. Winey, Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity, Macromolecules, 2004, 37(24), p 9048–9055

    Article  Google Scholar 

  28. Z. Fan and S.G. Advani, Rheology of Multiwall Carbon Nanotube Suspensions, J. Rheol., 2007, 51(4), p 585–604

    Article  Google Scholar 

  29. S. Abbasi, P.J. Carreau, A. Derdouri, and M. Moan, Rheological Properties and Percolation in Suspensions of Multiwalled Carbon Nanotubes in Polycarbonate, Rheol. Acta, 2009, 48(9), p 943–959

    Article  Google Scholar 

  30. S.H. Jin, Y.-B. Park, and K.H. Yoon, Rheological and Mechanical Properties of Surface Modified Multi-walled Carbon Nanotube-filled PET Composite, Compos. Sci. Technol., 2007, 67(15–16), p 3434–3441

    Article  Google Scholar 

  31. L.-N. Ho, T.F. Wu, and H. Nishikawa, Properties of Phenolic Based Ag Filled Conductive Adhesive Affected by Different Coupling Agents, J. Adhes., 2013, 89(11), p 847–858

    Article  Google Scholar 

  32. M.J. Yim, Y. Li, K.S. Moon, and C.P. Wong, Oxidation Prevention and Electrical Property Enhancement of Copper-Filled Isotropically Conductive Adhesives, J. Electron. Mater., 2007, 36(10), p 1341–1347

    Article  Google Scholar 

  33. H.S. Zhao, T.X. Liang, and B. Liu, Synthesis and Properties of Copper Conductive Adhesives Modified by SiO2 Nanoparticles, Int. J. Adhes. Adhes., 2007, 27(6), p 429–433

    Article  Google Scholar 

  34. Y.S. Lin and S.S. Chiu, Effects of Oxidation and Particle Shape on Critical Volume Fractions of Silver-Coated Copper Powders in Conductive Adhesives for Microelectronic Applications, Polym. Eng. Sci., 2004, 44(11), p 2075–2082

    Article  Google Scholar 

  35. G.R. Kasaliwal, A. Göldel, P. Pötschke, and G. Heinrich, Influence of Polymer Matrix Melt Viscosity and Molecular Weight on MWCNT Agglomerate Dispersion, Polymer, 2011, 52(4), p 1027–1036

    Article  Google Scholar 

  36. R. Socher, B. Krause, M.T. Müller, R. Boldt, and P. Pötschke, The Influence of Matrix Viscosity on MWCNT Dispersion and Electrical Properties in Different Thermoplastic Nanocomposites, Polymer, 2012, 53(2), p 495–504

    Article  Google Scholar 

  37. M. Liebscher, L. Tzounis, P. Pötschke, and G. Heinrich, Influence of the Viscosity Ratio in PC/SAN Blends Filled with MWCNTs on the Morphological, Electrical, and Melt Rheological Properties, Polymer, 2013, 54(25), p 6801–6808

    Article  Google Scholar 

  38. N. Grossiord, M.E.L. Wouters, H.E. Miltner, K. Lu, J. Loos, B.V. Mele, and C.E. Koning, Isotactic Polypropylene/Carbon Nanotube Composites Prepared by Latex Technology: Electrical Conductivity Study, Eur. Polym. J., 2010, 46(9), p 1833–1843

    Article  Google Scholar 

  39. A. Baron, J.R. Hernandez, E. Ibarboure, C. Derail, and E. Papon, Adhesives Based on Polyurethane Graft Multiblock Copolymers: Tack, Rheology and First Morphological Analyses, Int. J. Adhes. Adhes., 2009, 29(1), p 1–8

    Article  Google Scholar 

  40. L.W. Davies, R.J. Day, D. Bond, A. Nesbitt, J. Ellis, and E. Gardon, Effect of Cure Cycle Heat Transfer Rates on the Physical and Mechanical Properties of an Epoxy Matrix Composite, Compos. Sci. Technol., 2007, 67(9), p 1892–1899

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for JSPS fellows (23-01376). We would like to thank K. Matsubara from Sumika Bayer Urethane Co. Ltd. for kindly providing us the resin in this study. Besides, we would like to express our gratitude to Assoc. Prof. Dr. H. Abe for the use of rheology instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ngee Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, LN., Nishikawa, H. Copper-Filled Electrically Conductive Adhesives with Enhanced Shear Strength. J. of Materi Eng and Perform 23, 3371–3378 (2014). https://doi.org/10.1007/s11665-014-1115-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1115-4

Keywords

Navigation