Skip to main content
Log in

Tensile Behavior of T91 Steel Over a Wide Range of Temperatures and Strain-Rate Up To 104 s−1

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High chromium ferritic/martensitic steel T91 (9% Cr, 1% Mo), on account of its radiation resistance, is a candidate material for nuclear reactor applications. Its joining by an impact method to create a cold joint is tested in the realm of scoping tests toward the safe operation of nuclear fuels, encapsulated in representative T91 materials. Hitherto, T91 mechanical characterization at high strain rates is relatively unknown, particularly, in relation to impact joining and also to nuclear accidents. In this study, the mechanical characterization of T91 steel was performed in tension by varying the strain-rate (10−3 up to 104 s−1) and temperature (20-800°C) on dog-bone specimens, using standard testing machines or Hopkinson Bar apparati. As expected, the material is both temperature and strain-rate sensitive and different sets of parameters for the Johnson-Cook strength model were extracted via a numerical inverse procedure, in order to obtain the most suitable set to be used in this field of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Wang, M. Li, C. He, X. Wei, D. Wang, and H. Du, Experimental Study on High Strain Rate Behavior of High Strength 600–1000 MPa Dual Phase Steels and 1200 MPa Fully Martensitic Steels, Mater. Des., 2013, 47, p 510–521. doi:10.1016/j.matdes.2012.12.068

    Article  Google Scholar 

  2. A.K. Paul, A. Raj, P. Biswas, G. Manikandan, and R.K. Verma, Tensile Flow Behavior of Ultra Low Carbon, Low Carbon and Micro Alloyed Steel Sheets for Auto Application Under Low to Intermediate Strain Rate, Mater. Des., 2014, 57, p 211–217. doi:10.1016/j.matdes.2013.12.047

    Article  Google Scholar 

  3. F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, D. Wu, and Z. Yang, Experimental Study on Tensile Property of AZ31B Magnesium Alloy at Different High Strain Rates and Temperatures, Mater. Des., 2014, 57, p 10–20. doi:10.1016/j.matdes.2013.12.031

    Article  Google Scholar 

  4. D. Samantaray, A. Patel, U. Borah, S.K. Albert, and A.K. Bhaduri, Constitutive Flow Behavior of IFAC-1 Austenitic Stainless Steel Depicting Strain Saturation Over a Wide Range of Strain Rates and Temperatures, Mater. Des., 2014, 56, p 565–571. doi:10.1016/j.matdes.2013.11.053

    Article  Google Scholar 

  5. E. Cadoni, M. Dotta, D. Forni, and P. Spätig, Strain-Rate Behavior in Tension of the Tempered Martensitic Reduced Activation Steel Eurofer97, J. Nucl. Mater, 2011, 414(3), p 360–366. doi:10.1016/j.jnucmat.2011.05.002

    Article  Google Scholar 

  6. G. Solomos, C. Albertini, K. Labibes, V. Pizzinato, and B. Viaccoz, Strain rate Effects in Nuclear Steels at Room and Higher Temperatures, Nucl. Eng. Des., 2004, 229(2–3), p 139–149. doi:10.1016/j.nucengdes.2003.10.006

    Article  Google Scholar 

  7. A.K. Dureja, S.K. Sinha, D.N. Pawaskar, P. Seshu, J.K. Chakravartty, and R.K. Sinha, Modelling Flow and Work Hardening Behaviour of Cold Worked Zr-2.5Nb Pressure Tube Material in the Temperature Range of 30–600°C, Nucl. Eng. Des., 2013, doi:10.1016/j.nucengdes.2013.08.006

    Google Scholar 

  8. P. Spatig, R. Bonadé, G.R. Odette, J.W. Rensman, E.N. Campitelli, and P. Mueller, Plastic Flow Properties and Fracture Toughness Characterization of Unirradiated and Irradiated Tempered Martensitic Steels, J. Nucl. Mater., 2007, 367–370, p 527–538. doi:10.1016/j.jnucmat.2007.03.038

    Article  Google Scholar 

  9. M. Scapin, L. Peroni, and M. Peroni, Parameters Identification in Strain-Rate and Thermal Sensitive Visco-plastic Material Model for an Alumina Dispersion Strengthened Copper, Int. J. Impact Eng., 2012, 40–41, p 58–67. doi:10.1016/j.ijimpeng.2011.10.002

    Article  Google Scholar 

  10. G.P. Skoro, J.R.J. Bennett, T.R. Edgecock, and C.N. Booth, Yield Strength of Molybdenum, Tantalum and Tungsten at High Strain Rates and Very High Temperatures, J. Nucl. Mater., 2012, 426(1–3), p 45–51. doi:10.1016/j.jnucmat.2012.03.044

    Article  Google Scholar 

  11. W.-S. Lee, C.-F. Lin, T.-H. Chen, and W.-Z. Luo, High Temperature Deformation and Fracture Behaviour of 316L Stainless Steel Under High Strain Rate Loading, J. Nucl. Mater., 2012, 420(1–3), p 226–234. doi:10.1016/j.jnucmat.2011.10.005

    Article  Google Scholar 

  12. R.L. Klueh and A.T. Nelson, Ferritic/Martensitic Steels For Next-Generation Reactors, J. Nucl. Mater., 2007, 371, p 37–52

    Article  Google Scholar 

  13. C. Fazio et al., European Cross-Cutting Research on Structural Materials for Generation IV and Transmutation Systems, J. Nucl. Mater., 2009, 392, p 316–323

    Article  Google Scholar 

  14. Y. Zhang et al., Application of High Velocity Impact Welding at Varied Different Length Scales, J. Mater. Process. Technol., 2011, 211(5), p 944–952

    Article  Google Scholar 

  15. V. Psyk et al., Electromagnetic Forming: A review, J. Mater. Process. Technol., 2011, 211, p 787–829

    Article  Google Scholar 

  16. T. Malmberg, Dynamic Plastic Behaviour of Metals, Kernforschung Zentrum Karlsruhe, Report No. KFK 2023, September 1974

  17. G.R. Johnson and W.A. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, 7th International Symposium on Ballistics, 1983, 541–547

  18. H. Zhao, A Constitutive Model for Metals Over a Large Range of Strain Rates Identification for Mild-Steel and Aluminium Sheets, Mater. Sci. Eng. A, 1997, 230, p 95–97

    Article  Google Scholar 

  19. M. Sasso, G. Newaz, and D. Amodio, Material Characterization at High Strain Rate by Hopkinson Bar Tests and Finite Element Optimization, Mater. Sci. Eng. A, 2008, 487, p 289–300

    Article  Google Scholar 

  20. M. Sedighi, M. Khandaei, and H. Shokrollahi, An Approach in Parametric Identification of High Strain Rate Constitutive Model Using Hopkinson Pressure Bar Test Results, Mater. Sci. Eng. A, 2010, 527, p 3521–3528

    Article  Google Scholar 

  21. A.S. Milani, W. Daboussi, J.A. Nemes, and R.C. Abeyaratne, An Improved Multi-objective Identification of Johnson-Cook Material Parameters, Int. J. Impact Eng., 2009, 36, p 294–302

    Article  Google Scholar 

  22. B. Langrand, P. Geoffroy, J.-L. Petitniot, J. Fabis, E. Markiewicz, and P. drazetic, Identification Technique of Constitutive Model Parameters for Crashworthiness Modeling, Aerosp. Sci. Technol., 1999, 4, p 215–227

    Article  Google Scholar 

  23. J. Peirs, P. Verleysen, W. Van Paepegem, and J. Degrieck, Determining the Stress-Strain Behaviour at Large Strains from High Strain Rate Tensile and Shear Experiments, J. Impact Eng., 2011, 38, p 406–415. doi:10.1016/j.ijimpeng.2011.01.004

    Article  Google Scholar 

  24. B. Gladman, LS-DYNA Keywords User’s Manual, Version 971, Vol. 1, 2007, Livermore Software Technology Corporation (LSTC)

  25. N. Stander, W. Roux, T. Goel, T. Eggleston, and K. Craig, LS-OPT User’s Manual: A Design Optimization and Probabilistic Analysis Tool for the Engineering Analyst, Version 4.0, 2009, Livermore Software Technology Corporation (LSTC)

  26. T. Børvik, O.S. Hopperstad, S. dey, E.V. Pizzinato, M. Langseth, and C. Albertini, Strength and Ductility of Weldox 460 E Steel at High Strain Rates, Elevated Temperatures and Various Stress Triaxialities, Eng. Fract. Mech., 2005, 72, p 1071–1087. doi:10.1016/j.engfracmech.2004.07.007

    Article  Google Scholar 

  27. A.H. Clausen, T. Børvik, O.S. Hopperstad, and A. Benallal, Flow and Fracture Characteristics of Aluminium Alloy AA5083-H116 as Function of Strain Rate, Temperature and Triaxiality, Mater. Sci. Eng. A, 2004, 364(1–2), p 260–272. doi:10.1016/j.msea.2003.08.027

    Article  Google Scholar 

  28. D. Jia and K.T. Ramesh, A Rigorous Assessment of the Benefits of Miniaturization in the Kolsky Bar System, Exp. Mech., 2004, 44, p 445–454. doi:10.1177/0014485104047608

    Article  Google Scholar 

  29. W. Cheng and B. Song, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications, Mechanical Engineering Series Springer, New York, 2011, ISBN 978-1-4419-7981-0

    Book  Google Scholar 

  30. M. Borsutzki et al., Recommendations for Dynamic Tensile Testing of Sheet Steels, 2005, International Iron and Steel Institute

  31. T. Goel and N. Stander, Multi-Objective Optimization using LS-OPT, 2007, LS-DYNA Conference

  32. S. Bandyopadhyay and S. Saha, Unsupervised Classification, 2013. doi: 10.1007/978-3-642-32451-2_2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Scapin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scapin, M., Peroni, L., Fichera, C. et al. Tensile Behavior of T91 Steel Over a Wide Range of Temperatures and Strain-Rate Up To 104 s−1 . J. of Materi Eng and Perform 23, 3007–3017 (2014). https://doi.org/10.1007/s11665-014-1081-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1081-x

Keywords

Navigation