Skip to main content
Log in

Microstructure and Cavitation Erosion Properties of Ceramic Coatings Fabricated on Ti-6Al-4V Alloy by Pack Carburizing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, Ti-6Al-4V alloy was processed by pack carburizing to improve the cavitation erosion behavior. X-ray diffraction and scanning-electron microscopy (SEM) analysis showed that a uniform and crack-free ceramic coating formed on the surface of the treated samples. The coating layer comprised primary TiC and less oxide. Cavitation erosion experiment results indicated that the treated samples have the factor of 3.44 to 6.68 increase in cavitation erosion resistance (R e) as compared with the as-received sample. The ceramic coatings with high hardness and good metallurgical bonding were responsible for the enhanced cavitation erosion properties. When the coatings were treated at condition of high temperature and/or long time, the R e was enervated due to the thin oxide film formed at the outermost surface. Cavitation erosion mechanism for the coatings was characterized as brittle mode by SEM observation of the worn surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Yamada, The State of the USA Titanium Industry in-1995, Mater. Sci. Eng. A, 1996, 213, p 8–15

    Article  Google Scholar 

  2. D. Dube, M. Fiset, R. Laliberte, and R. Simoneau, Cavitation Resistance Improvement of IRECA Steel Via Laser Processing, Mater. Lett., 1996, 28, p 93–99

    Article  Google Scholar 

  3. G. Straffelini and A. Molinari, Dry Sliding Wear of Ti-6Al-4V Alloy as Influenced by the Counterface and Sliding Conditions, Wear, 1999, 236(1–2), p 328–338

    Article  Google Scholar 

  4. G. Straffelini, A. Andriani, B. Tesi, A. Molinari, and E. Galvanetto, Lubricated Rolling-Sliding Behaviour of Ion Nitrided and Untreated Ti-6Al-4V, Wear, 2004, 256(3–4), p 346–352

    Article  Google Scholar 

  5. A. Neville and B.A.B. McDougall, Erosion- and Cavitation-Corrosion of Titanium and its Alloys, Wear, 2001, 250, p 726–735

    Article  Google Scholar 

  6. M. Duraiselvam, R. Galun, V. Wesling, B.L. Mordike, R. Reiter, J. Oligmuller, and G. Buvanashekaran, Cavitation Erosion Resistance of Ti6Al4V Laser Alloyed with TiC-Reinforced Dual Phase Intermetallic Matrix Composites, Mater. Sci. Eng. A, 2007, 454–455, p 63–68

    Article  Google Scholar 

  7. F.L. Palmieri, K.A. Watson, G. Morales, T. Williams, R. Hicks, C.J. Wohl, J.W. Hopkins, and J.W. Connell, Laser Ablative Surface Treatment for Enhanced Bonding of Ti-6Al-4V Alloy, ACS Appl. Mater. Interface, 2013, 5, p 1254–1261

    Article  Google Scholar 

  8. H.C. Man, M. Bai, and F.T. Cheng, Laser Diffusion Nitriding of Ti-6Al-4V for Improving Hardness and Wear Resistance, Appl. Surf. Sci., 2011, 258, p 436–441

    Article  Google Scholar 

  9. G. Cassar, S. Banfield, J.C. Avelar-Batista Wilson, J. Housden, A. Matthews, and A. Leyland, Impact Wear Resistance of Plasma Diffusion Treated and Duplex Treated/PVD-Coated Ti-6Al-4V Alloy, Surf. Coat. Technol., 2012, 206, p 2645–2654

    Article  Google Scholar 

  10. B.S. Mann, V. Arya, and B.K. Pant, Impact Wear Resistance of Plasma Diffusion Treated and Duplex Treated/PVD-Coated Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2012, 21, p 849–853

    Google Scholar 

  11. H. Hiraga, T. Inoue, H. Shimura, and A. Matsunawa, Cavitation Erosion Mechanism of NiTi Coatings Made by Laser Plasma Hybrid Spraying, Wear, 1999, 231, p 272–278

    Article  Google Scholar 

  12. H.C. Man, Z.D. Cui, T.M. Yue, and F.T. Cheng, Cavitation Erosion Behavior of Laser Gas Nitrided Ti and Ti6Al4V Alloy, Mater. Sci. Eng. A, 2003, 355, p 167–173

    Article  Google Scholar 

  13. Z.D. Cui, H.C. Man, F.T. Cheng, and T.M. Yue, Microstructure and Wear Performance of Gradient Ti/TiN Metal Matrix Composite Coating Synthesized Using a Gas Nitriding Technology, Surf. Coat. Technol., 2003, 162, p 147–153

    Article  Google Scholar 

  14. J. Kaspar, J. Bretschneider, S. Jacob, S. Bonß, B. Winderlich, and B. Brenner, Microstructure, Hardness and Cavitation Erosion Behaviour of Ti-6Al-4V Laser Nitrided Under Different Gas Atmospheres, Surf. Eng., 2007, 23, p 99–106

    Article  Google Scholar 

  15. F. Fariaut, C. Boulmer-Leborgne, E. Le Menn, T. Sauvage, C. Andreazza-Vignolle, P. Andreazza, and C. Langlade, Excimer Laser Induced Plasma for Aluminum Alloys Surface Carburizing, Appl. Surf. Sci., 2002, 186, p 105–110

    Article  Google Scholar 

  16. F. Çavuşlu and M. Usta, Kinetics and Mechanical Study of Plasma Electrolytic Carburizing for PURE IRON, Appl. Surf. Sci., 2011, 257, p 4014–4020

    Article  Google Scholar 

  17. A.F. Saleh, J.H. Abboud, and K.Y. Benyounis, Surface Carburizing of Ti-6Al-4V Alloy by Laser Melting, Opt. Laser Eng., 2010, 48, p 257–267

    Article  Google Scholar 

  18. T.I. Wu and J.K. Wu, Effects of Temperature and Current Density on the Surface Hardness and Tribological Properties of Ti-6Al-4V Alloy by Molten Salt Carburization, Surf. Coat. Technol., 1997, 90, p 258–267

    Article  Google Scholar 

  19. C.J. Liao, Y.H. He, J.S. Yang, B. Nan, and X.L. Liu, Effect of Carburization on Electrochemical Corrosion Behaviours of TiAl Alloy, Mater. Sci. Eng. B, 2013, 178, p 449–456

    Article  Google Scholar 

  20. K. Matsuura and M. Kudoh, Surface Modification of Titanium by a Diffusional Carbo-nitriding Method, Acta Mater., 2002, 50, p 2693–2700

    Article  Google Scholar 

  21. T.S. Kim, Y.G. Park, and M.Y. Wey, Characterization of Ti-6Al-4V Alloy Modified by Plasma Carburizing Process, Mater. Sci. Eng. A, 2003, 361, p 275–280

    Article  Google Scholar 

  22. Y.G. Park, M.Y. Wey, and S.I. Hong, Enhanced Wear and Fatigue Properties of Ti-6Al-4V Alloy Modified by Plasma Carburizing/CrN Coating, J. Mater. Sci., 2007, 18, p 925–931

    Google Scholar 

  23. S.A. Tsipas, M.R. Vázquez-Alcázar, E.M. Ruiz Navas, and E. Gordo, Boride Coatings Obtained by Pack Cementation Deposited on Powder Metallurgy and Wrought Ti and Ti-6Al-4V, Surf. Coat. Technol., 2010, 205, p 2340–2347

    Article  Google Scholar 

  24. M. Shafiee Afarani, S. Khorshahian, and M. Sharifitabar, Boride Coatings Obtained by Pack Cementation Deposited on Powder Metallurgy and Wrought Ti and Ti-6Al-4V, Surf. Coat. Technol., 2013, 219, p 94–100

  25. ASTM G32-98, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, vol. 03.02, 1998, p 115

  26. M.X. Nie, Cavitation Prevention with Roughened Surface, J. Hydraul. Eng. ASCE., 2001, 127, p 878–880

    Article  Google Scholar 

  27. D. Eylon, S. Fujishiro, P.J. Postans, and F.H. Froes, Titanium Technology, The Titanium Development Association Press, Dayton, 1985, p 87

    Google Scholar 

  28. R. Chatterjee-Fisher and T.S. Sundarshan, Boriding and Diffusion Metallizing, Marcel Dekker Inc. Press, New York, 1989, p 567–609

    Google Scholar 

  29. K.T. Rie and E. Broszeit, Plasma Diffusion Treatment and Duplex Treatment: Recent Development and New Applications, Surf. Coat. Technol., 1995, 76–77, p 425–436

    Google Scholar 

  30. M. Salehi and S.R. Hosseini, Structural Characterization of Novel Ti-Cu Intermetallic Coatings, Surf. Eng., 1996, 12, p 221–228

    Article  Google Scholar 

  31. S.R. Hosseini and A. Ahmadi, Evaluation of the Effects of Plasma Nitriding Temperature and Time on the Characterisation of Ti 6Al 4V Alloy, Vacuum, 2013, 87, p 30–39

    Article  Google Scholar 

  32. S. Farè, N. Lecis, M. Vedani, A. Silipigni, and P. Favoino, Properties of Nitrided Layers Formed During Plasma Nitriding of Commercially Pure Ti and Ti-6Al-4V Alloy, Surf. Coat. Technol., 2012, 206, p 2287–2292

    Article  Google Scholar 

  33. F.C. Wagner, E.J. Bucur, and M.A. Steinberg, The Rate of Diffusion of Carbon in Alpha and Beta Titanium, Metall. Trans. ASM, 1956, 48, p 742–761

    Google Scholar 

  34. C.T. Kowk, F.T. Cheng, and H.C. Man, Laser Surface Modification of UNS S31603 Stainless Steel. Part II: Cavitation Erosion Characteristics, Mater. Sci. Eng. A, 2000, 290, p 74–88

    Article  Google Scholar 

  35. H. Mochizuki, M. Yokota, and S. Hattori, Effects of Materials and Solution Temperatures on Cavitation Erosion of Pure Titanium and Titanium Alloy in Seawater, Wear, 2007, 262, p 522–528

    Article  Google Scholar 

  36. T. Okada, Y. Iwai, and K. Azazu, A Study of Cavitation Bubble Collapse Pressures and Erosion. Part 1: A Method for Measurement of Collapse Pressures. Part 2: Estimate of Erosion from the Distribution of Bubble Collapse Pressures, Wear, 1989, 133, p 219–242

    Article  Google Scholar 

  37. H.S. Sidhu, B.S. Sidhu, and S. Prakash, Solid Particle Erosion of HVOF Sprayed NiCr and Stellite-6 Coatings, Surf. Coat. Technol., 2007, 202, p 232–238

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Tianjin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cui, Z., Li, Z. et al. Microstructure and Cavitation Erosion Properties of Ceramic Coatings Fabricated on Ti-6Al-4V Alloy by Pack Carburizing. J. of Materi Eng and Perform 23, 2772–2779 (2014). https://doi.org/10.1007/s11665-014-1030-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1030-8

Keywords

Navigation