Skip to main content
Log in

Structure and Properties of Y2O3-Doped Al2O3-MWCNT Nanocomposites Prepared by Pressureless Sintering and Hot-Pressing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study describes the combined effects of multi-walled carbon nanotubes (CNTs) additions and Y2O3 doping on the microstructures and mechanical properties of Al2O3-CNT nanocomposites fabricated by pressureless and hot-press sintering processes. A uniform dispersion of CNTs within the Al2O3 matrix was successfully attained via a combined approach using surfactant, sonication, and adequate period of incubation. Small amounts (1 wt.%) of Y2O3, as dopants, significantly affected the densification and properties of pressureless sintered monolithic Al2O3 and its nanocomposites at low CNT concentrations (<1 wt.%); however, they hardly showed any improvement at higher CNT contents. As opposed to the pressureless sintering, pressures applied during high temperature sintering in combination with the Y2O3 doping contributed in generating a homogenous microstructure and improved the densities (7 and 15%) and microhardness (11 and 12%) of Al2O3 reinforced with higher CNT contents (2 and 5 wt.%), respectively. Adding on, hot-pressed Y2O3-doped Al2O3 reinforced with 2 and 5 wt.% CNTs showed higher hardness (19 and 70%), flexural strength (10 and 5%), and fracture toughness (26 and 11%), respectively, compared to similar but CNT-free samples. These results showed that pressure-assisted sintering and Y2O3 are promising for the fabrication of CNT-reinforced Al2O3 nanocomposites, especially at higher CNT concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.T. Thostenson, Z. Ren, and T.W. Chao, Advances in the Science and Technology of Carbon Nanotubes and their Composites: A Review, Compos. Sci. Technol., 2001, 16, p 1899–1912

    Article  Google Scholar 

  2. A. Peigney, C. Laurent, and A. Rousset, Carbon Nanotube Novel Ceramic Matrix Nanocomposites, Ceram. Int., 2000, 26, p 677–683

    Article  Google Scholar 

  3. L. Osayande and I. Okoli, Fracture Toughness Enhancement for Alumina System: A Review, Int. J. Appl. Ceram. Technol., 2008, 5, p 313–323

    Article  Google Scholar 

  4. N.P. Padture, Multifunctional Composites of Ceramics and Single-Walled Carbon Nanotubes, Adv. Mater., 2009, 21, p 1767–1770

    Article  Google Scholar 

  5. J. Fan, D. Zhao, and J. Song, Preparation and Microstructure of Multi-Walled Carbon Nanotubes Toughened Al2O3 Composite, J. Am. Ceram. Soc., 2006, 89, p 750–753

    Article  Google Scholar 

  6. G. Zhan, J. Kuntz, J. Wan, and K. Mukherjee, Single-Walled Carbon Nanotubes as Attractive Toughing Agent in Alumina Based Nanocomposites, Nat. Mater., 2003, 2, p 38–42

    Article  Google Scholar 

  7. I. Ahmad, A. Kennedy, and Y.Q. Zhu, Multi-Walled Carbon Nanotubes Reinforced Al2O3 Nanocomposites: Mechanical Properties and Interfacial Investigations, Compos. Sci. Technol., 2010, 70, p 1199–1206

    Article  Google Scholar 

  8. F. Inam, T. Pijis, and M.J. Reece, The Production of Advanced Fine-Grained Alumina by Carbon Nanotubes Addition, J. Eur. Ceram. Soc., 2011, 31, p 2853–2859

    Article  Google Scholar 

  9. I. Ahmad, H. Cao, H. Chen, H. Zhao, A. Kennedy, and Y.Q. Zhu, Carbon Nanotube Toughened Aluminium Oxide Nanocomposites, J. Eur. Ceram. Soc., 2009, 30, p 865–873

    Article  Google Scholar 

  10. F. Inam and M.J. Reece, Electrically Conductive Alumina-Carbon Nanotubes Prepared by Spark Plasma Sintering, J. Eur. Ceram. Soc., 2010, 30, p 153–157

    Article  Google Scholar 

  11. J. Sun and L. Gao, Development of a Dispersion Process for Carbon Nanotubes in Ceramic Matrix by Hetero-Coagulation, Carbon, 2003, 41, p 1063–1068

    Article  Google Scholar 

  12. B. Chan and I. Seung, Fabrication of CNT-Reinforced Al2O3 Matrix Nanocomposites by Sol-Gel, Mater. Sci. Eng., 2005, 395, p 124–128

    Article  Google Scholar 

  13. C.S. Zhang, W.G. Fahrenholtz, G.E. Hilmas, and J.Y. Edward, Pressureless Sintering of Carbon Nanotube—Al2O3 Composites, J. Eur. Ceram. Soc., 2010, 30(6), p 1373–1380

    Article  Google Scholar 

  14. J. Wang, S.Y. Lim, and C.H. Chew, Dramatic Effect of a Small Amount of MgO Addition on the Sintering of Al2O3—5 vol.% SiC Nanocomposite, Mater. Lett., 1998, 33, p 273–277

    Article  Google Scholar 

  15. Y.K. Jeong, A. Nakahira, and K. Niihara, Effects of Additives on Microstructure and Properties of Al2O3—Silicon Carbide Nanocomposites, J. Am. Ceram. Soc., 1999, 82, p 3609–3612

    Article  Google Scholar 

  16. D.A. Rani, Y. Yoshizawa, K. Hirao, and Y. Yamushi, Effect of Rare-Earth Dopants on Mechanical Properties of Al2O3, J. Am. Ceram. Soc., 2008, 87, p 289–292

    Article  Google Scholar 

  17. F. Jianxin, A.M. Thompson, M.P. Harmer, and H.M. Chan, Effect of Yttrium and Lanthanum on the Final-Stage Sintering Behavior of Ultrahigh-Purity Al2O3, J. Am. Ceram. Soc., 1997, 80, p 2005–2012

    Google Scholar 

  18. S. Lartigue, C. Carry, and L. Priester, Grain Boundaries in High Temperature Deformation of Yttria and Magnesia Co-Doped Alumina, J. Phys. Colloq., 1990, 51, p 985–990

    Article  Google Scholar 

  19. D. Delaunay, A.M. Huntz, and P. Lacombe, The Influence of Yttrium on the Sintering of Al2O3, J. Less Common Met., 1980, 70, p 115–117

    Article  Google Scholar 

  20. Y.K. Jeong, A. Nakharia, and K. Niihara, Effect of Additives on Microstructure and Properties of Al2O3 Silicon Carbide Nanocomposite, J. Am. Ceram. Soc., 1999, 82, p 3069–3612

    Google Scholar 

  21. S.K.C. Pillai and S. Hamsphire, Controlling the Grain Growth in Yttria Doped Al2O3—5 wt.% SiC Nanocomposite Prepared by Pressureless Sintering, J. Am. Ceram. Soc., 2004, 24, p 3317–3326

    Article  Google Scholar 

  22. A.G. Robertson, D.S. Wilkinson, and C.H. Caceres, Creep and Creep Fracture in Hot-Pressed Al2O3, J. Am. Ceram. Soc., 1991, 74, p 915–921

    Article  Google Scholar 

  23. S. Lartigue and F. Dupau, Grain Boundary Behavior in Superplastic Mg-Doped Al2O3 with Yttria Co-doping, Acta. Metal. Mater., 1994, 42, p 293–302

    Article  Google Scholar 

  24. F. Cesari, L. Esposito, F.M. Furgiuele, C. Maletta, and A. Tucci, Fracture Toughness of Al2O3-zirconia composites, Ceram. Int., 2006, 32, p 249–255

    Article  Google Scholar 

  25. M. Ajayan, Nanotubes from Carbon, Chem. Rev., 1999, 99, p 1787–1799

    Article  Google Scholar 

  26. T.K. Shen and P. Hing, Ultrasonic Through-Transmission Method of Evaluating the Modulus of Elasticity of Al2O3-ZrO2 Composite, J. Mater. Sci., 1997, 32, p 6633–6638

    Article  Google Scholar 

  27. G.R. Anstis, P. Chantikul, and D.B. Marshall, A Critical Evaluation of Indentation Technique for Measuring Fracture Toughness: I, Direct Crack Method, J. Am. Ceram. Soc., 1986, 4(1), p 533–538

    Google Scholar 

  28. J. Sun and L. Gao, Reinforcement of Al2O3 Matrix with Multi-Walled CNTs, Ceram. Int., 2005, 31, p 893–896

    Article  Google Scholar 

  29. C.E. Borsa, H.S. Ferreira, and R.A. Kiminami, Liquid Phase Sintering of Al2O3/SiC, J. Eur. Ceram. Soc., 1999, 19, p 615–621

    Article  Google Scholar 

  30. M. Alex, I. Todd, and S.G. Robert, Effects of Yttrium on the Sintering and Microstructure of Al2O3 Silicon Carbide Nanocomposites, J. Am. Ceram. Soc., 2005, 88(9), p 2354–2361

    Article  Google Scholar 

  31. C.P.S. Kumar, B. Baron, and S. Hampshire, Effect of Dopants on Densification, Microstructure and Mechanical Properties of Al2O3-Silicon Nanocomposites Ceramics Prepared by Pressureless Sintering, J. Eur. Ceram. Soc., 2004, 24, p 3317–3326

    Article  Google Scholar 

  32. J.D. Cawley and J.W. Halloran, Dopant Distribution in Nominally Yttrium-Doped Sapphire, J. Am. Ceram. Soc., 1986, 69, p 195–196

    Article  Google Scholar 

  33. F. Danan, L.Q. Chen, and S.P. Chen, Numerical Simulation of Zener Pinning with Growing Second-Phase Particles, J. Am. Ceram. Soc., 1998, 81, p 526–532

    Google Scholar 

  34. R.L. Coble, Diffusion Models for Hot Pressing with Surface Energy and Pressure Effects as Driving Forces, J. Appl. Phys., 1970, 41, p 4798–4808

    Article  Google Scholar 

  35. S. Sarkar and P.K. Das, Microstructure and Physicomechanical Properties of Pressure-Less Sintered Multi-Walled Carbon Nanotube/Alumina Nanocomposites, Ceram. Int., 2012, 38, p 423–432

    Article  Google Scholar 

  36. O. Thomas and J. Rodel, Evolution of Mechanical Properties of Porous Al2O3 During Free Sintering and Hot Pressing, J. Am. Ceram. Soc., 1999, 82, p 3080–3086

    Google Scholar 

  37. M.S. Lee, Handbook of Composites Reinforcements, Wiley-Blackwell, New York, 1992, p 151

    Google Scholar 

  38. M. Chen, F.R. Jones, and J.E. Bailey, The Role of Interface on the Densification of Sol-Gel Processed Al2O3 and Mullite Fibre Composites, Inst. Phys. Conf. Ser., 1990, 111, p 227–237

    Google Scholar 

  39. K.M. Liew, C.H. Wong, X.Q. He, and M.J. Tan, Thermal Stability of Single and Multi-Walled Carbon Nanotubes, Phys. Rev., 2005, B71, p 075424

    Article  Google Scholar 

  40. Z. Xia, W.A. Curtain, and B.W. Sheldon, Fracture Toughness of Highly Ordered Carbon Nanotubes/Al2O3 Nanocomposite, Trans. ASME, 2004, 126, p 224–238

    Google Scholar 

  41. C. Laurent, A. Peigney, and A. Rousset, Carbon Nanotubes-Fe-Al2O3 Nanocomposites. Part II: Microstructure and Mechanical Properties of the Hot-Pressed Composites, J. Eur. Ceram. Soc., 1998, 18, p 2005–2013

    Article  Google Scholar 

Download references

Acknowledgments

IA appreciates the financial support from the Center of Excellence for Research in Engineering Materials (CEREM), Advanced Manufacturing Institute (AMI), King Saud University (KSU), and Kingdom of Saudi Arabia. Authors are grateful to all the technical staff of CEREM laboratories for their kind assistance in material characterization. The first author is very thankful to Prof. Yanqiu Zhu of Exeter University, United Kingdom for his kind contribution in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, I., Dar, M.A. Structure and Properties of Y2O3-Doped Al2O3-MWCNT Nanocomposites Prepared by Pressureless Sintering and Hot-Pressing. J. of Materi Eng and Perform 23, 2110–2119 (2014). https://doi.org/10.1007/s11665-014-0975-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0975-y

Keywords

Navigation