Skip to main content
Log in

Theoretical Analysis of Melting Point Depression of Pure Metals in Different Initial Configurations

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A general equation is derived for melting point depression (MPD) of pure metals, consisting of three terms: MPD due to high gas pressure, MPD due to high strain energy, and MPD due to small size of the metal. Particular equations are derived for different configurations of the solid metal, including grains embedded within a matrix. The equations obtained in this paper can be used to design nano-joining structures with improved MPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T.T. Bao, Y. Kim, J. Lee, and J.G. Lee, Preparation and Thermal Analysis of Sn-Ag Nano Solders, Mater. Trans., 2010, 51, p 2145–2149

    Article  Google Scholar 

  2. C. Zou, Y. Gao, B. Yang, and Q. Zhai, Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder, J. Mater. Sci. Mater. Electron., 2010, 21, p 868–874

    Article  Google Scholar 

  3. R. Longtin, E. Hack, J. Neuenschwander, and J. Janczak-Rusch, Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys Using Nanotechnology, Adv. Mater., 2011, 20, p 1–5

    Google Scholar 

  4. G. Pigozzi, A. Antusek, J. Janczak-Rusch, M. Parlinska-Wojtan, D. Passerone, C.A. Pignedoli, V. Bissig, J. Patscheider, and L.P.H. Jeurgens, Phase Constitution and Interface Structure of Nano-sized Ag-Cu/AlN Multilayers: Experimental and Ab Initio Modeling, Appl. Phys. Lett., 2012, 101, p 181602

    Article  Google Scholar 

  5. P. Pawlow, Über die Abhängigkeit des Schmelzpunktes von der Oberflächenergie eines festen Körpers, Z. Phys. Chem., 1908, 55, p 545–548

    Google Scholar 

  6. M. Takagi, Electron-Diffraction Study of Liquid-Solid Transition of Thin Solid Films, J. Phys. Soc. Jpn., 1954, 9(3), p 359–363

    Article  Google Scholar 

  7. J.F. Pocza, A. Barna, and P.B. Barna, Formation Processes of Vacuum-Deposited Indium Films and Thermodynamical Properties of Submicroscopic Particles Observed by In Situ Electron Microscopy, J. Vac. Sci. Technol., 1969, 6(4), p 472–475

    Article  Google Scholar 

  8. C.J. Coombes, The Melting of Small Particles of Lead and Indium, J. Phys. F, 1972, 2, p 441–449

    Article  Google Scholar 

  9. Ph Buffat and J.-P. Borel, Size Effect on the Melting Temperature of Gold Particles, Phys. Rev. A, 1976, 13, p 2287–2296

    Article  Google Scholar 

  10. P.R. Couchman and W.A. Jesser, Thermodynamic Theory of Size Dependence of Melting Temperature in Metals, Nature, 1977, 269, p 481–483

    Article  Google Scholar 

  11. F. Spaepen and D. Turnbull, Negative Pressures and Melting Point Depression in Oxide-Coated Liquid Metal Droplets, Scripta Metall., 1979, 13, p 149–151

    Article  Google Scholar 

  12. G.L. Allen, W.W. Gile, and W.A. Jesser, The Melting Temperature of Microcrystals Embedded in a Matrix, Acta Metall., 1980, 28, p 1695–1701

    Article  Google Scholar 

  13. R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deuscher, T. Ben-David, J.M. Penisson, and A. Bourret, Surface Melting Enhanced by Curvature Effects, Surf. Sci., 1994, 303, p 231–246

    Article  Google Scholar 

  14. K. Chattopadhyay and R. Goswami, Melting and Superheating of Metals and Alloys, Prog. Mater. Sci., 1997, 42, p 287–300

    Article  Google Scholar 

  15. M. Wautelet, On the Shape Dependence of the Melting Temperature of Small Particles, Phys. Lett. A, 1998, 246, p 341–342

    Article  Google Scholar 

  16. Z. Zhang, J.C. Li, and Q. Jiang, Modelling for Size-Dependent and Dimension-Dependent Melting of Nanocrystals, J. Phys. D, 2000, 33, p 2653–2656

    Article  Google Scholar 

  17. Q. Jiang, Z. Zhang, and J.C. Li, Melting Thermodynamics of Nanocrystals Embedded in a Matrix, Acta Mater., 2000, 48, p 4791–4795

    Article  Google Scholar 

  18. T. Tanaka and S. Hara, Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems, Z. Metallkd., 2001, 92, p 467–472

    Google Scholar 

  19. M. Hillert and J. Argen, Effect of Surface Free Energy and Surface Stress on Phase Equilibria, Acta Mater., 2002, 50, p 2429–2441

    Article  Google Scholar 

  20. U. Tartaglino and E. Tosatti, Strain Effects at Solid Surfaces Near the Melting Point, Surf. Sci., 2003, 532–535, p 623–627

    Article  Google Scholar 

  21. Q. Jiang, L.H. Liang, and J.C. Li, Thermodynamic Superheating of Low-Dimensional Metals Embedded in Matrix, Vacuum, 2003, 72, p 249–255

    Article  Google Scholar 

  22. Z. Shi, P. Wynblatt, and S.G. Srinivasan, Melting Behavior of Nanosized Lead Particles Embedded in an Aluminium Matrix, Acta Mater., 2004, 52, p 2305–2316

    Article  Google Scholar 

  23. V.M. Samsonov and O.A. Malkov, Thermodynamic Model of Crystallization and Melting of Small Particles, Cent. Eur. J. Phys., 2004, 2(1), p 90–103

    Article  Google Scholar 

  24. Q.S. Mei, S.C. Wang, H.T. Cong, Z.H. Jin, and K. Lu, Determination of Pressure Effect on the Melting Point Elevation of Al Nanoparticles Encapsulated in Al2O3 without epitaxial interface, Phys. Rev. B, 2004, 70, p 125421

    Article  Google Scholar 

  25. J. Chang and E. Johnson, Surface and Bulk Melting of Small Metal Clusters, Philos. Mag., 2005, 85(30), p 3617–3627

    Article  Google Scholar 

  26. J. Slutsker, K. Thornton, A.L. Roytburd, J.A. Warren, and G.B. McFadden, Phase Field Modeling of Solidification Under Stress, Phys. Rev. B, 2006, 74(1), p 014103

    Article  Google Scholar 

  27. J.J. Hoyt, Effect of Stress on Melting and Freezing in Nanopores, Phys. Rev. Lett., 2006, 96(4), p 045702

    Article  Google Scholar 

  28. G. Guisbiers and M. Wautelet, Size, Shape and Stress Effects on the Melting Temperature of Nano-polyhedral Grains on a Substrate, Nanotechnology, 2006, 17, p 2008–2011

    Article  Google Scholar 

  29. J. Sun and S.L. Simon, The Melting Behavior of Aluminum Nanoparticles, Thermochim. Acta, 2007, 463, p 32–40

    Article  Google Scholar 

  30. G. Guisbiers, O. Van Overschelde, and M. Wautelet, Nanoparticulate Origin of Intrinsic Residual Stress in Thin Films, Acta Mater., 2007, 55, p 3541–3546

    Article  Google Scholar 

  31. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, and A.M. Dmytruk, Size-Dependent Melting of Spherical Copper Nanoparticles Embedded in a Silica Matrix, Phys. Rev. B, 2007, 75(8), p 085434

    Article  Google Scholar 

  32. P. Letellier, A. Mayaffre, and M. Turmine, Melting Point Depression of Nanosolids: Nonextensive Thermodynamics Approach, Phys. Rev. B, 2007, 76, p 045428

    Article  Google Scholar 

  33. Q.S. Mei and K. Lu, Melting and Superheating of Crystalline Solids: From Bulk to Nanocrystals, Prog. Mater. Sci., 2007, 52, p 1175–1262

    Article  Google Scholar 

  34. J. Lee, T. Tanaka, J. Lee, and H. Mori, Effect of Substrates on the Melting Temperature of Gold Nanoparticles, Calphad, 2007, 31, p 105–111

    Article  Google Scholar 

  35. K.K. Nanda, Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model, Pramana J. Phys., 2009, 172, p 617–628

    Article  Google Scholar 

  36. V.I. Levitas, M. Pantoya, G. Chauhan, and I.J. Rivero, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Chem. C, 2009, 113(32), p 14088–14096

    Article  Google Scholar 

  37. G. Kaptay, The Extension of the Phase Rule to Nano-systems and on the Quaternary Point in One-Component Nano Phase Diagrams, J. Nanosci. Nanotechnol., 2010, 10, p 8164–8170

    Article  Google Scholar 

  38. W. Luo, L. Deng, K. Su, K. Li, G. Liao, and S. Xiao, Gibbs Free Energy Approach to Calculate the Thermodynamic Properties of Copper Nanocrystals, Phys. B, 2011, 406, p 859–863

    Article  Google Scholar 

  39. V.I. Levitas and K. Samani, Size and Mechanics Effects in Surface-Induced Melting of Nanoparticles, Nat. Commun., 2011, 2, p 284

    Article  Google Scholar 

  40. V.I. Levitas and K. Samani, Coherent Solid/Liquid Interface with Stress Relaxation in a Phase-Field Approach to the Melting/Solidification Transition, Phys. Rev. B, 2011, 84(14), p 140103

    Article  Google Scholar 

  41. G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Reassessment of the Ag-Cu Phase Diagram for Nanosystems Including Particle Size and Shape Effect, Calphad, 2012, 36, p 52–56

    Article  Google Scholar 

  42. G. Kaptay, The Gibbs Equation Versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-materials, J. Nanosci. Nanotechnol., 2012, 12(3), p 2625–2633

    Article  Google Scholar 

  43. A.I. Rusanov, The Development of the Fundamental Concepts of Surface Thermodynamics, Colloid J., 2012, 74(2), p 136–153

    Article  Google Scholar 

  44. G. Kaptay, Nano-Calphad: Extension of the Calphad Method to Systems with Nano-phases and Complexions, J. Mater. Sci., 2012, 47, p 8320–8335

    Article  Google Scholar 

  45. V.I. Levitas, Z. Ren, Y. Zeng, Z. Zhang, and G. Han, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Rev. B, 2012, 85(22), p 220104

    Article  Google Scholar 

  46. J. Leitner and M. Kamrádek, Termodynamicky popis nanosystemu, Chem. Listy, 2013, 107, p 606–613

    Google Scholar 

  47. J. Lee and K.J. Sim, General Equations of CALPHAD-Type Thermodynamic Description for Metallic Nanoparticle Systems, Calphad, 2013, doi:10.1016/j.calphad.2013.07.008

    Google Scholar 

  48. D.A. Firmansyah, K. Sullivan, K.S. Lee, Y.H. Kim, R. Zahaf, M.R. Zachariah, and D.J. Lee, Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles, Phys. Chem. C, 2013, 116(1), p 404–411

    Article  Google Scholar 

  49. L. Wojtczak, The Melting Point of Thin Films, Phys. Status Solidi, 1967, 22, p K163–K166

    Article  Google Scholar 

  50. L.P.H. Jeurgens, Z. Wang, and E.J. Mittemeijer, Thermodynamics of Reactions and Phase Transformations at Interfaces and Surfaces, Int. J. Mater. Res., 2009, 100, p 1281–1307

    Article  Google Scholar 

  51. D.G. Gromov and S.A. Gavrilov, Manifestation of the Heterogeneous Mechanism Upon Melting of Low-Dimensional Systems, Phys. Solid State, 2009, 51(10), p 2135–2144

    Article  Google Scholar 

  52. R.C. Tolman, The Effect of Droplet Size on Surface Tension, J. Chem. Phys., 1949, 17, p 333–337

    Article  Google Scholar 

  53. M.W. Chase (Ed.), Janaf, Thermochemical Tables, 3rd ed., J. Phys. Chem. Data, 1985, 14(Suppl 1)

  54. J. Emsley, The Elements, Clarendon Press, Oxford, 1989

    Google Scholar 

  55. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermal Expansion, IFI/Plenum, New York, 1977

    Book  Google Scholar 

  56. T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993

    Google Scholar 

  57. G. Kaptay, A Unified Model for the Cohesive Enthalpy, Critical Temperature, Surface Tension and Volume Thermal Expansion Coefficient of Liquid Metals of bcc, fcc and hcp Crystals, Mater. Sci. Eng. A, 2008, 495, p 19–26

    Article  Google Scholar 

  58. I. Barin, Thermochemical Properties of Pure Substances, vols 1, 2, VCH, Weinheim, 1993

  59. H.M. Ledbetter and E.R. Naimon, Elastic Properties of Metals and Alloys. II. Copper, J. Phys. Chem. Ref. Data, 1974, 3(4), p 897–934

    Article  Google Scholar 

  60. D. Gerlich, S.L. Dole, and G.A. Slack, Elastic Properties of Aluminum Nitride, J. Phys. Chem. Solids, 1986, 47(5), p 437–441

    Article  Google Scholar 

  61. N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, Amsterdam, 1999

    Google Scholar 

  62. G. Kaptay, E. Báder, and L. Bolyán, Interfacial Forces and Energies Relevant to Production of Metal Matrix Composites, Mater. Sci. Forum, 2000, 329–330, p 151–156

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from COSTMP0903 Action and SBFI Nr. C11.0055 project is greatly acknowledged. The results of the corresponding author presented in this paper are achieved within the TÁMOP-4.2.1.B-10/2/KONV-2010-0001 project and carried out as part of the TÁMOP-4.2.2.A-11/1/KONV-2012-0019 project in the framework of the New Széchenyi Plan and was supported by the European Union, and co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kaptay.

Appendices

Appendix 1: Physical Properties for the Cu/AlN System

The standard melting point of Cu is T om  = 1358.0 ± 0.2 K (Ref 53). The standard molar melting entropy is Δm S omol  = 9.7 ± 0.3 J/mol K (Ref 53). The molar volume (m3/mol) of solid copper is written by the equation (Ref 54, 55)

$$ V_{\text{s}}^{\text{o}} = 7.011 \times 10^{ - 6} + 2.518 \times 10^{ - 10} T + 1.178 \times 10^{ - 13} T^{2} \pm 1\% . $$
(A1)

The molar volume of solid Cu at 298 K and at its standard melting point is (7.10 ± 0.07) 10−6 and (7.57 ± 0.08) 10−6 m3/mol, respectively. The bulk packing fraction of the fcc crystal is 0.74. From here, the standard atomic radius of Cu is r a = 0.128 nm. The linear heat expansion coefficient (1/K) of the solid Cu follows from Eq A1 as

$$ \upalpha_{\text{s}} \equiv \frac{1}{{3V_{\text{s}}^{\text{o}} }}\frac{{dV_{\text{s}}^{\text{o}} }}{dT} = \frac{{8.39 \times 10^{ - 11} + 7.85 \times 10^{ - 14} T}}{{7.011 \times 10^{ - 6} + 2.518 \times 10^{ - 10} \,T + 1.178 \times 10^{ - 13} \,T^{2} }} \pm 2\% . $$
(A2)

The linear heat expansion coefficient of solid Cu at 298 K and at its standard melting point is (1.51 ± 0.03) 10−5 and (2.52 ± 0.05) 10−5 1/K, respectively, the average value is (2.0 ± 0.5) 10−5 1/K. The molar volume (m3/mol) of liquid copper is written by the equation (Ref 54-56)

$$ V_{\text{l}}^{\text{o}} = 7. 10 2 \times 10^{ - 6} + 4. 3 7 7 \times 10^{ - 10} T + 1. 3 2 5 \times 10^{ - 1 3} T^{ 2} \pm 2\% . $$
(A3)

The molar volume of liquid Cu at 298 K and at its standard melting point is (7.24 ± 0.14) 10−6 and (7.94 ± 0.16) 10−6 m3/mol, respectively. The linear heat expansion coefficient (1/K) of liquid Cu follows from Eq A3 as

$$ \upalpha_{l} \equiv \frac{1}{{3V_{\text{l}}^{\text{o}} }}\frac{{dV_{\text{l}}^{\text{o}} }}{dT} = \frac{{1.46 \times 10^{ - 10} + 8.83 \times 10^{ - 14} T}}{{7.102 \times 10^{ - 6} + 4.377 \times 10^{ - 10} T + 1.325 \times 10^{ - 13} T^{2} }} \pm 2\% . $$
(A4)

The linear heat expansion coefficient of liquid Cu at 298 K and at its standard melting point is (2.38 ± 0.05) 10−5 and (3.35 ± 0.07) 10−5 1/K, respectively, the average value is (2.9 ± 0.5) 10−5 1/K. The average molar volume (m3/mol) of the solid and liquid phases is

$$ V^{\text{o}} = 7.0565 \times 10^{ - 6} + 3.4475 \times 10^{ - 10} T + 1.2515 \times 10^{ - 13} T^{2} \pm 1\% . $$
(A5)

The molar volume change upon melting (m3/mol) is obtained as the difference between Eq A3 and A1, while the relative molar volume change upon melting is the latter divided by the molar volume of the solid

$$ \Delta_{\text{m}} V^{\text{o}} \cong 9.1 \times 10^{ - 8} + 1.859 \times 10^{ - 10} T + 1.47 \times 10^{ - 14} T^{2} , $$
(A6)
$$ \frac{{\Delta_{\text{m}} V^{\text{o}} }}{{V_{\text{s}}^{\text{o}} }} \cong \frac{{9.1 \times 10^{ - 8} + 1.859 \times 10^{ - 10} T + 1.47 \times 10^{ - 14} T^{2} }}{{7.011 \times 10^{ - 6} + 2.518 \times 10^{ - 10} T + 1.178 \times 10^{ - 13} T^{2} }}. $$
(A7)

The molar volume change upon melting at 298 K and at its standard melting point approximately equals 1.48 × 10−7 m3/mol (2.08%) and 3.71 × 10−7 m3/mol (4.90%), respectively.

The standard entropy of melting of Cu per unit volume at standard melting point of 1358 K is the ratio of Δm S omol  = 9.7 ± 0.3 J/mol K and the average molar volume of V o = (7.76 ± 0.12) 10−6 m3/mol: Δm S o = (1.25 ± 0.06) 106 J/m3K.

The standard surface tension and surface energy of copper (Ref 56, 57) (J/m2)

$$ \upsigma_{{{\text{l}}/{\text{g}}}}^{\text{o}} = 1.30 - 2.3 \times 10^{ - 4} (T - T_{\text{m}}^{\text{o}} ), $$
(A8)
$$ \upsigma_{{{\text{s}}/{\text{g}}}}^{\text{o}} = 1.60 - 4.7 \times 10^{ - 4} (T - T_{\text{m}}^{\text{o}} ). $$
(A9)

The bulk modulus of liquid copper at its melting point is the inverse of its bulk compressibility and it is estimated as K l = 100 GPa (Ref 56). It probably decreases linearly with the decrease of the cohesion energy in the liquid. The standard cohesion energy of liquid Cu at its melting point is about (Ref 57)

$$ H_{\text{Cu,l,m}}^{\text{o}} = - 26.3RT_{\text{m,Cu}}^{\text{o}} + 2.62 \times 10^{ - 4} (RT_{\text{m,Cu}}^{\text{o}} )^{2} , $$
(A10)

where R = 8.3145 J/mol K, the universal gas constant. Substituting T om  = 1358.0 K into Eq A10: H oCu,l,m  = −263 kJ/mol. The heat capacity of liquid Cu is about 32.8 J/mol K, and is not T-dependent (Ref 58). Thus, the T-coefficient of the cohesion energy change is the ratio of these two values: 1.25 × 10−4 1/K. The final T-dependence of the bulk modulus of liquid Cu is

$$ K_{\text{l}} \cong 120 (1 - 1.25 \times 10^{ - 4} T)\,{\text{GPa}} . $$
(A11)

The T-dependence of solid copper is approximately written as (Ref 59)

$$ K_{\text{s}} \cong 143\,(1 - 1.4 \times 10^{ - 4} T)\,{\text{GPa}} . $$
(A12)

The Young modulus and Poisson ratio of AlN at 298 K are E m = 308 GPa and νm = 0.25 (Ref 60). Thus, the shear modulus from Eq 31: μm = 120 GPa at 298 K. Its T-dependence scales with the melting point, so in comparison to solid Cu of Eq A12 its T-coefficient is lower by about a coefficient of 2.4

$$ \upmu_{\text{m}} \cong 122\,(1 - 5.8 \times 10^{ - 5} T)\,{\text{GPa,}} $$
(A13a)
$$ E_{\text{m}} \cong 313 (1 - 5.8 \times 10^{ - 5} T)\,{\text{GPa}} . $$
(A13b)

The average linear expansion coefficient of AlN is αm = 5.27 × 10−6 1/K (Ref 60) between 20 and 800°C. No temperature dependence is taken into account.

Calculations will be performed for T o = 298 K. So, the two integrals of Eq 32 are described approximately as

$$ \int\limits_{{T_{\text{o}} }}^{{T_{\text{m}} }} {(\upalpha_{\text{s}} - \upalpha_{\text{m}} )dT} = - 2.56 \times 10^{ - 3} + 7.22 \times 10^{ - 6} T + 4.56 \times 10^{ - 9} T^{2} , $$
(A14a)
$$ \int\limits_{{T_{\text{o}} }}^{{T_{\text{m}} }} {(\upalpha_{\text{l}} - \upalpha_{\text{m}} )dT} = - 5.21 \times 10^{ - 3} + 1.61 \times 10^{ - 5} T + 4.56 \times 10^{ - 9} T^{2} . $$
(A14b)

The liquid/matrix interfacial energy is defined as (Ref 61)

$$ \upsigma_{{{\text{l}}/{\text{m}}}}^{\text{o}} = \upsigma_{{{\text{l}}/{\text{g}}}}^{\text{o}} + \upsigma_{{{\text{m}}/{\text{g}}}}^{\text{o}} - W_{{{\text{l}}/{\text{m}}}}^{\text{o}} , $$
(A15)

where W ol/m (J/m2) is the adhesion energy at the liquid Cu/AlN matrix interface. At the melting point of Cu: σ ol/g  = 1.30 J/m2 (see Eq A8). Surface energy of AlN is about σ om/g  = 2.53 J/m2 at 1273 K (Ref 62). The contact angle of liquid Cu on AlN, as covalent and non-reactive ceramic is about 150° (Ref 61). Thus, from the Young-Dupré equation the adhesion energy at the melting point of Cu is about W ol/m  = 0.17 J/m2. In the first approximation, this value is T-independent. Thus, at the melting point of Cu: σ ol/m  = 3.66 J/m2. Its T-dependence is approximately

$$ \upsigma_{\text{l/m}}^{\text{o}} = 3.66 - 5 \times 10^{ - 4} (T - T_{\text{m}}^{\text{o}} )\,{\text{J}}/{\text{m}}^{2} . $$
(A16)

Solid Cu is not coherent with AlN. Thus, its adhesion energy is similar to that of the liquid Cu: W os/m  = 0.17 J/m2. Then, the solid/matrix interfacial energy approximately equals

$$ \upsigma_{{{\text{s}}/{\text{m}}}}^{\text{o}} = 3.96 - 8 \times 10^{ - 4} (T - T_{\text{m}}^{\text{o}} )\,{\text{J}}/{\text{m}}^{2} . $$
(A17)

Appendix 2: The Derivation of a General Equation for the Strain Energy Density

When an elastic body is deformed, work W is done (J). This work, stored in the body is the strain energy. When this strain energy is divided by the volume V of the body (m3), the strain energy density E is obtained (J/m3 = N/m2 = Pa).

In the simplest case, let us apply a tensile force F (N) to a cylindrical body of initial length L (m) and of cross-sectional area A (m2). As a result, the body will be elongated (deformed) by x (m), what is called the absolute strain. The relative strain (called simply strain) is the ratio of the absolute elongation and the initial length: ɛ ≡ x/L (ɛ is dimensionless). As a result, the work done and stored within the body as strain energy is W = 0.5Fx (J). The stress in the body (σ, Pa) is the tensile force per unit cross-sectional area: σ ≡ F/A. Now, let us express x from ɛ ≡ x/L and F from σ ≡ F/A and substitute into the equation of the strain energy: W = 0.5Fx = 0.5σAɛL. Remember, that AL = V (the volume of the body) and E ≡ W/V. Then, from the above

$$ E = \frac{\upsigma \upvarepsilon }{2}. $$
(B1)

When tensile changes are small, strain is proportional to stress: ɛ ≅ σ/E Y, where E Y (Pa) is the modulus of elasticity, or the Young modulus. Expressing from here σ as function of ɛ (or vice versa) we can obtain two versions for the equations of the strain energy density

$$ E = \frac{{E_{\text{Y}} \upvarepsilon^{2} }}{2}, $$
(B2)
$$ E = \frac{{\upsigma^{2} }}{{2E_{\text{Y}} }}. $$
(B3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaptay, G., Janczak-Rusch, J., Pigozzi, G. et al. Theoretical Analysis of Melting Point Depression of Pure Metals in Different Initial Configurations. J. of Materi Eng and Perform 23, 1600–1607 (2014). https://doi.org/10.1007/s11665-014-0885-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0885-z

Keywords

Navigation