Skip to main content
Log in

Numerical Analysis of Effect of Backplate Diffusivity on the Transient Temperature in Friction Stir Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

It is still not clearly known as to what extent the temperature field of friction stir welding joint is influenced by backplate diffusivity owing to the limitation of temperature measuring points. In the present study, therefore, the effect of backplate diffusivity on the temperature field of the workpiece was systematically investigated based on the numerical analysis. Simulated results show that the backplate diffusivity has a significant influence on not only the peak temperature but the final temperature distribution. More heat is dissipated by using a high thermal conductivity backplate during FSW. With increasing the backplate diffusivity, the peak temperature decreases gradually and the average cooling rate increases first and then slightly decreases. In addition, the time spent above 195 °C presents a nearly linear decrease with increasing the backplate diffusivity. Moreover, the width of temperature region higher than 195 °C in the transverse direction is remarkably diminished by using the backplate of a high conductivity, and changes little during the entire process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78

    Article  Google Scholar 

  2. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding-Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53, p 980–1023

    Article  CAS  Google Scholar 

  3. A. Simar, Y. Bréchet, B. de Meester, A. Denquin, C. Gallais, and T. Pardoen, Integrated Modeling of Friction Stir Welding of 6xxx Series Al Alloys: Process, Microstructure and Properties, Prog. Mater. Sci., 2012, 57, p 95–183

    Article  CAS  Google Scholar 

  4. H. Aydın, A. Bayram, A. Uğuz, and S.K. Akay, Tensile Properties of Friction Stir Welded Joints of 2024 Aluminum Alloys In Different Heat-Treated State, Mater. Design, 2009, 30(6), p 2211–2221

    Article  Google Scholar 

  5. H.J. Liu, H. Fujii, M. Maeda, and K. Nogi, Tensile Properties and Fracture Locations of Friction-Stir-Welded Joints of 2017-T351 Aluminum Alloy, J. Mater. Process. Technol., 2003, 142(3), p 692–696

    Article  CAS  Google Scholar 

  6. W.B. Lee, Y.M. Yeon, and S.B. Jung, The Improvement of Mechanical Properties of Friction-Stir-Welded A356 Al Alloy, Mater. Sci. Eng. A, 2003, 355(1–2), p 154–159

    Google Scholar 

  7. K. Elangovan and V. Balaubramanian, Influence of Post-weld Heat Treatment on Tensile Properties of Friction Stir Welded AA6061 Aluminum Alloys Joints, Mater. Charact., 2008, 59(9), p 1168–1177

    Article  CAS  Google Scholar 

  8. A. Scialpi, L.A.C. De Filippis, and P. Cavaliere, Influence of Shoulder Geometry on Microstructure and Mechanical Properties of Friction Stir Welded 6082 Aluminium Alloy, Mater. Des., 2007, 28(4), p 1124–1129

    Article  CAS  Google Scholar 

  9. C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-coottignies, Quantitative Investigation of Precipitation and Mechanical Behaviour for AA2024 Friction Stir Welds, Acta Mater., 2005, 53, p 2447–2458

    Article  CAS  Google Scholar 

  10. P. Upadhyay and A.P. Reynolds, Effects of Thermal Boundary Conditions in Friction Stir Welded AA7050-T7 Sheets, Mater. Sci. Eng. A, 2010, 527(6), p 1537–1543

    Article  Google Scholar 

  11. R.D. Fu, Z.Q. Sun, R.C. Sun, Y. Li, H.J. Liu, and L. Lei, Improvement of Weld Temperature Distribution and Mechanical Properties of 7050 Aluminum Alloy Butt Joints by Submerged Friction Stir Welding, Mater. Des., 2011, 32(10), p 4825–4831

    Article  CAS  Google Scholar 

  12. R. Zettler, S. Da, A.M. Antonio, S. Rodrigues, A. Blanco, S. Dos, and F. Jorge, Dissimilar Al to Mg Alloy Friction Stir Welds, Adv. Eng. Mater., 2006, 8(5), p 415–421

    Article  CAS  Google Scholar 

  13. Y.S. Sato, S.H.C. Park, M. Michiuchi, and H. Kokawa, Friction Stir Welding of Ultrafine Grained Al Alloy 1100 Produced by Accumulative Roll-bonding, Scr. Mater., 2004, 50(1), p 57–60

    Article  CAS  Google Scholar 

  14. I. Galvão, J.C. Oliveira, A. Loureiro, and D.M. Rodrigues, Formation and Distribution of Brittle Structures in Friction Stir Welding of Aluminium and Copper: Influence of Shoulder Geometry, Intermetallics, 2012, 22, p 122–128

    Article  Google Scholar 

  15. H.J. Liu, J.J. Shen, L. Zhou, Y.Q. Zhao, C. Liu, and L.Y. Kuang, Microstructural Characterisation and Mechanical Properties of Friction Stir Welded Joints of Aluminium Alloy to Copper, Sci. Technol. Weld. Join., 2011, 16(1), p 92–98

    Article  CAS  Google Scholar 

  16. J. Ouyang, E. Yarrapareddy, and R. Kovacevic, Microstructural Evolution in the Friction Stir Welded 6061 Aluminum Alloy (T6-Temper Condition) to Copper, J. Mater. Process. Technol., 2006, 172(1), p 110–112

    Article  CAS  Google Scholar 

  17. C.Y. Chen, H.J. Liu, and J.C. Feng, Stability of the Grain Structure in 2219-O Aluminum Alloy Friction Stir Welds During Solution Treatment, Mater. Charact., 2007, 58(2), p 174–178

    Article  CAS  Google Scholar 

  18. M.A. Mofid, A. Abdollah-zadeh, and F.M. Ghaini, The Effect of Water Cooling during Dissimilar Friction Stir Welding of Al Alloy to Mg Alloy, Mater. Des., 2012, 36, p 161–167

    Article  CAS  Google Scholar 

  19. W.Y. Li, Z.H. Zhang, J.L. Li, and Y.J. Chao, Numerical Analysis of Joint Temperature Evolution during Friction Stir Welding Based on Sticking Contact, J. Mater. Eng. Perform., 2012, 21(9), p 1849–1856

    Article  CAS  Google Scholar 

  20. W.F. Xu, J.H. Liu, D.L. Chen, G.H. Luan, and J.S. Yao, Change of Microstructure and Cyclic Deformation Behavior Along the Thickness in a Friction-Stir-Welded Aluminum Alloy, Scr. Mater., 2012, 66(1), p 5–8

    Article  CAS  Google Scholar 

  21. T. Ogura, Y. Saito, T. Nishida, H. Nishida, T. Yoshida, N. Omichi, M. Fujimoto, and A. Hirose, Partitioning Evaluation of Mechanical Properties and the Interfacial Microstructure in a Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joint, Scr. Mater., 2012, 66(8), p 531–534

    Article  CAS  Google Scholar 

  22. W.F. Xu, J.H. Liu, G.H. Luan, and C.L. Dong, Temperature Evolution, Microstructure and Mechanical Properties of Friction Stir Welded Thick 2219-O Aluminum Alloy Joints, Mater. Des., 2009, 30(6), p 1886–1893

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (51005180, 51275338), the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (131052), the Research Fund of the State Key Laboratory of Solidification Processing (NPU, China) (69-QP-2011), the Fundamental Research Fund of NPU (JC201233) and the 111 Project (B08040) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenya Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Li, W., Li, J. et al. Numerical Analysis of Effect of Backplate Diffusivity on the Transient Temperature in Friction Stir Welding. J. of Materi Eng and Perform 22, 2446–2450 (2013). https://doi.org/10.1007/s11665-013-0538-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0538-7

Keywords

Navigation