Skip to main content
Log in

Microwave Ignited Combustion Synthesis as a Joining Technique for Dissimilar Materials

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microwave energy has been exploited to ignite combustion synthesis (CS) reactions of properly designed powders mixtures, in order to rapidly reach the joining between different kinds of materials, including metals (Titanium and Inconel) and ceramics (SiC). Beside the great advantage offered by CS itself, i.e., rapid and highly localized heat generation, the microwaves selectivity in being absorbed by micrometric metallic powders and not by bulk metallic components represents a further intriguing aspect in advanced materials joining applications, namely the possibility to avoid the exposition to high temperatures of the entire substrates to be joined. Moreover, in case of microwaves absorbing substrates, the competitive microwaves absorption by both substrates and powdered joining material, leads to the possibility of adhesion, interdiffusion and chemical bonding enhancements. In this study, both experimental and numerical simulation results are used to highlight the great potentialities of microwave ignited CS in the joining of advanced materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Varma and J.P. Lebrat, Combustion Synthesis of Advanced Materials, Chem. Eng. Sci., 1992, 47(9–11), p 2179–2194

    CAS  Google Scholar 

  2. K. Morsi, The Diversity of Combustion Synthesis Processing: A Review, J. Mater. Sci., 2012, 47, p 68–92

    Article  CAS  Google Scholar 

  3. Y. Zheng, H. Li, and T. Zhou, Microstructure and Mechanism of Al2O3-ZrO2 Eutectic Coating Prepared by Combustion-Assisted Thermal Explosion Spraying, Appl. Surf. Sci., 2011, 258, p 1531–1534

    Article  CAS  Google Scholar 

  4. K. Morsi and N. Wang, Combustion Synthesis of Microstructurally Designed Green Powder Compacts, Mater. Sci. Eng., A, 2008, 478, p 208–213

    Article  Google Scholar 

  5. J.J. Moore and H.J. Feng, Combustion Synthesis of Advanced Materials: Part I. Reaction Parameters, Prog. Mater Sci., 1995, 39, p 243–273

    Article  CAS  Google Scholar 

  6. C. Bartuli, R.W. Smith, and E. Shtessel, SHS Powders for Thermal Spray Applications, Ceram. Int., 1997, 23, p 61–68

    Article  CAS  Google Scholar 

  7. A.L. Borisova and Y.S. Borisov, Self-propagating High-temperature Synthesis for the Deposition of Thermal Sprayed Coatings, Powder Metall. Met. Ceram., 2008, 47, p 80–94

    Article  CAS  Google Scholar 

  8. H.E. Camurlu and F. Maglia, Self-propagating High-temperature Synthesis of ZrB2 or TiB2 Reinforced Ni-Al Composite Powders, J. Alloys Compd., 2009, 478, p 721–725

    Article  CAS  Google Scholar 

  9. R. Rosa, R. Sola, E. Colombini, P. Veronesi, and C. Leonelli, Microwave Ignited Combustion Synthesis of Metal- and Intermetallic-matrix Composites, CD Proceedings of Euro PM2011, EPMA Ed., Vol. 3, October 9-12, 2011, Barcelona, Spain, ISBN 978-1-899072-23-1

  10. R. Rosa and P. Veronesi, Functionally Graded Materials Obtained by Combustion Synthesis Techniques: A Review, Chap. 2, Functionally Graded Materials, Nathan J. Reynolds Ed., Nova Science Publishers Inc., New York, 2011, p 93–122, ISBN 978-1-61209-616-2

  11. R. Rosa, “Microwaves as Ignition Source in the Combustion Synthesis of High Performances Materials,” Faculty of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy, Ph.D. Thesis, 2011

  12. M. Gupta and W.W.L. Eugene, Microwaves and Metals, John Wiley and Sons, Singapore, 2007

    Book  Google Scholar 

  13. J. Cheng, R. Roy, and D. Agrawal, Experimental Proof of Major Role of Magnetic Field Losses in Microwave Heating of Metal and Metallic Composites, J. Mater. Sci. Lett., 2001, 20, p 1561–1563

    Article  CAS  Google Scholar 

  14. K.I. Rybakov, V.E. Semenov, S.V. Egorov, A.G. Eremeev, I.V Plotnikov, and Y.V. Bykov, Microwave Heating of Conductive Powder Materials, J. Appl. Phys., 2006, 99(2), article number 023506/9 pages

  15. C. Leonelli, P. Veronesi, L. Denti, A. Gatto, and L. Iuliano, Microwave Assisted Sintering of Green Metal Parts, J. Mater. Process. Technol., 2008, 205, p 489–496

    Article  CAS  Google Scholar 

  16. G.P. Cammarota, A. Casagrande, G. Poli, and P. Veronesi, Ni-Al-Ti Coatings Obtained by Microwave Assisted SHS: Effect of Annealing on Microstructural and Mechanical Properties, Surf. Coat. Technol., 2009, 203, p 1429–1437

    Article  CAS  Google Scholar 

  17. R. Rosa, P. Veronesi, G. Poli, C. Leonelli, A.B. Corradi, A. Casagrande, and I. Boromei, Ni-Al-Ti Coatings Obtained by Microwave Assisted Combustion Synthesis, Surf. Eng., 2011, doi:10.1179/1743294411Y.0000000046

  18. I. Boromei, A. Casagrande, F. Tarterini, G. Poli, P. Veronesi, and R. Rosa, Ni-Al-Ti Coatings Obtained by Microwave Assisted SHS: Oxidation Behaviour in the 750-900 °C Range, Surf. Coat. Technol., 2010, 204, p 1793–1799

    Article  CAS  Google Scholar 

  19. W.P. Liu, D.P. Zhu, and G.Z. Cong, Combustion Synthesis of NiAl and In-Situ Joining to Ni-Based Superalloy, J. Mater. Sci. Technol., 2001, 17, p 179–180

    Google Scholar 

  20. C. Pascal, R.M. Marin-Ayral, and J.C. Tédenac, Joining of Nickel Monoaluminide to a Superalloy Substrate by High Pressure Self-propagating High-temperature Synthesis, J. Alloys Compd., 2002, 337, p 221–225

    Article  CAS  Google Scholar 

  21. C. Pascal, R.M. Marin-Ayral, J.C. Tédenac, and C. Merlet, Combustion Synthesis: a New Route for Repair of Gas Turbine Components—Principles and Metallurgical Structure in the NiAl/RBD61/Superalloy Junction, Mater. Sci. Eng. A, 2003, 341, p 144–151

    Article  Google Scholar 

  22. H. De Jouvancourt, M.C. Record, and R.M. Marin-Ayral, Effects of Platinum Contraction on Combustion Synthesis of NiAl: Application in Repairing Ni Based Superalloys, Mater. Sci. Technol., 2007, 23, p 593–599

    Article  Google Scholar 

  23. A.J. Rasmussen, A. Aguero, M. Gutierrez, and M.J. Landeira Ostergard, Microstructure of Thin and Thick Slurry Aluminide Coatings on Inconel 690, Surf. Coat. Technol., 2008, 202, p 1479–1485

    Article  CAS  Google Scholar 

  24. S.J. Hong, G.H. Hwang, W.K. Han, and S.G. Kang, Cyclic Oxidation of Pt/Pd-modified Aluminide Coating on a Nickel-based Superalloy at 1150°C, Intermetallics, 2009, 17, p 381–386

    Article  CAS  Google Scholar 

  25. J. Goela and M.A. Pickering, CVD SiC Manufacturing Process Reproducibility, Ceram. Eng. Sci. Proc., 1998, 19, p 579–588

    CAS  Google Scholar 

  26. M. Ferraris, M. Salvo, V. Casalegno, A. Ciampichetti, F. Smeacetto, and M. Zucchetti, Joining of Machined SiC/SiC Composites for Thermonuclear Fusion Reactors, J. Nucl. Mater., 2008, 375, p 410–415

    Article  CAS  Google Scholar 

  27. C.H. Henager, Jr, and R.J. Kurtz, Low-activation Joining of SiC/SiC Composites for Fusion Applications, J. Nucl. Mater., 2011, 417, p 375–378

    Article  CAS  Google Scholar 

  28. J. Peng, J. Binner, and S. Bradshaw, Microwave Initiated Self-propagating High-temperature Synthesis of SiC, J. Mater. Synth. Proc., 2001, 9, p 363–368

    Article  CAS  Google Scholar 

  29. G. Golkar, S.M. Zebarjad, and J.V. Khaki, Optimizing the Ignition Behaviour of Microwave Combustion Synthesized Al2O3/TiC Composite Using Taguchi Robust Design Method, J. Alloys Compd., 2009, 487, p 751–757

    Article  CAS  Google Scholar 

  30. G. Poli, R. Sola, and P. Veronesi, Microwave-assisted Combustion Synthesis of NiAl Intermetallics in a Single Mode Applicator: Modeling and Optimisation, Mater. Sci. Eng. A, 2006, 441, p 149–156

    Article  Google Scholar 

  31. P. Veronesi, R. Rosa, E. Colombini, C. Leonelli, and G. Poli, Microwave Assisted Combustion Synthesis of Non-Equilibrium Intermetallic Compounds, J. Microw. Power Electromagn. Energy, 2010, 44, p 45–56

    Google Scholar 

  32. P. Zhu, J.C.M. Li, and C.T. Liu, Reaction Mechanism of Combustion Synthesis of NiAl, Mater. Sci. Eng. A, 2002, 329–331, p 57–68

    Google Scholar 

  33. J.H. Lee and N.N. Thadhani, Reaction Synthesis Mechanism in Dynamically Densified Ti + C Powder Compacts, Scripta Mater., 1997, 37, p 1979–1985

    Article  CAS  Google Scholar 

  34. B. Zhou, W. Yu, D. You, Z. Zhang, R. Xu, and L. Li, The Canister Experiment of the Ti-C Reaction as a Heat Source for Space Chemical Release Experiments, Adv. Space Res., 1999, 24, p 989–992

    Article  CAS  Google Scholar 

  35. H.J. Cai, X.H. Zhang, and J.V. Wood, In-Situ Combustion Synthesis and Densification of TiC-xNi Cermets, Mater. Sci. Eng. A, 2000, 280, p 328–333

    Article  Google Scholar 

  36. U. Anselmi Tamburini, F. Maglia, G. Spinolo, S. Doppiu, M. Monagheddu, and G. Cocco, Self-propagating Reactions in The Ti-Si System: A SHS-MASHS Comparative Study, J. Mater. Synth. Proc., 2000, 8, p 377–383

    Article  CAS  Google Scholar 

  37. C.L. Yeh, W.H. Chen, and C.C. Hsu, Formation of Titanium Silicides Ti5Si3 and TiSi2 by Self-propagating Combustion Synthesis, J. Alloys Compd., 2007, 432, p 90–95

    Article  CAS  Google Scholar 

  38. R. Rosa, P. Veronesi, C. Leonelli, A.B. Corradi, M. Ferraris, V. Casalegno, M. Salvo, and S. Han, Microwave Activated Combustion Synthesis and Compaction in Separate E and H Fields: Numerical Simulation and Experimental Results, Proceedings of CIMTEC 2010, 12th International Ceramics Congress, June 6-11, 2010, Montecatini Terme, Italy, Adv. Sci Technol. 63, 2010, p 197–202

  39. P. Veronesi, A. Corradi, C. Leonelli, R. Rosa, M. Salvo, M. Ferraris, and V. Casalegno, Microwave Activated SHS for the Joining of SiCf/SiC Composites to Themselves and to SiC matrix, Proceedings of the Global Congress on Microwave Energy Applications GCMEA 2008 MAJIC 1st, August 4-8, 2008, Otsu Prince Hotel, Lake Biwa, Otsu, Japan, p 713–716

  40. R. Rosa, P. Veronesi, S. Han, V. Casalegno, M. Salvo, E. Colombini, C. Leonelli, and M. Ferraris, Microwave Assisted Combustion Synthesis in the Ti-Si-C System for the Joining of SiC: Numerical Simulation and Experimental Results, J. Mater. Chem., 2012, submitted for publication

  41. E. Colombini, R. Rosa, P. Veronesi, and A. Casagrande, Microwave Ignited Combustion Synthesis of Intermetallic Compounds, Modelling and Experimental Results, La Metallurgia Italiana, 2011, 4, p 29–34

    Google Scholar 

  42. E. Colombini, R. Rosa, P. Veronesi, M. Cavallini, G. Poli, and C. Leonelli, Microwave Ignited Combustion Synthesis as a Joining Technique for Dissimilar Materials: Modeling and Experimental Results, Int. J. SHS, 2012, 21, to be published

  43. R. Rosa, P. Veronesi, C. Leonelli, and A.B. Corradi, Energy Transfer in Microwave Assisted Combustion Synthesis of Inorganic Compounds, Proceedings of 13th International Conference on Microwave and RF Power Applications, AMPERE 2011, Junwu Tao Ed., September 5-8, 2011, Toulouse, France, Cépadués Editions, p 169–172

  44. J.R. Jokisaari, S. Bhaduri, and S.B. Bhaduri, Processing of Single Phase Mo5Si3 by Microwave Activated Combustion Synthesis, Mater. Sci. Eng. A, 2002, 323(1–2), p 478–483

    Google Scholar 

  45. J.R. Jokisaari, S. Bhaduri, and S.B. Bhaduri, Microwave Activated Combustion Synthesis of Bulk Cobalt Silicides, J. Alloys Compd., 2005, 394(1–2), p 160–167

    Article  CAS  Google Scholar 

  46. J.R. Jokisaari, S. Bhaduri, and S.B. Bhaduri, Microwave Activated Combustion Synthesis of Titanium Aluminides, Mater. Sci. Eng. A, 2005, 394(1–2), p 385–392

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Ing. V. Marra for temporary granting the Comsol multiphysics Version 3.5a license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Rosa.

Additional information

This article is an invited submission to JMEP selected from presentations at the Symposia “Wetting, soldering and brazing” and “Diffusion bonding and characterization” belonging to the Topic “Joining” at the European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2011), held September 12-15, 2011, in Montpellier, France, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, R., Colombini, E., Veronesi, P. et al. Microwave Ignited Combustion Synthesis as a Joining Technique for Dissimilar Materials. J. of Materi Eng and Perform 21, 725–732 (2012). https://doi.org/10.1007/s11665-012-0188-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0188-1

Keywords

Navigation