Skip to main content
Log in

Mechanical Properties and Welding Power of Friction Stirred AA2024-T35 Joints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study is concerned with the effect of friction stir welding (FSW) parameters on the mechanical properties and the consumed welding power for AA2024-T35 joints. AA2024-T35 is friction stir welded at different welding speeds (16, 40, and 80 mm/min), rotation speed (900, 1120, and 1400 rpm), and two tool profiles (triangular and square). The welding power is measured and evaluated with two previously established models (O. Frigaad, O. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32A, p 1189–1200; O.P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, and D. Allehaux, Mechanical and Thermal Modelling of Friction Stir Welding, J. Mater. Process. Technol., 2006, 171, p 348–357). The tool profile as well as the welding speed show significant effect on the microstructure especially at lower welding speeds. The increase of the welding speed improves the mechanical properties for both tool profiles whereas it has an insignificant effect on the welding power. The square profile produces better mechanical properties and consumed more power, at 40 mm/min, than the triangular one. Moreover, the welding speed showed a weak effect on the welding power, but the need of power increased with the increase of the rotation speed. The measured power is found to be in agreement with the computed one through a theoretical work established by Heurtier et al. (Mechanical and Thermal Modelling of Friction Stir Welding, J. Mater. Process. Technol., 2006, 171, p 348–357).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Elangovan and V. Balasubramanian, Influences of Tool Pin Profile and Welding Speed on the Formation of Friction Stir Processing Zone in AA2219 Aluminum Alloy, Mater. Sci. Eng. A, 2007, 459(1–2), p 7–18

    Google Scholar 

  2. H.W. Zhang, Z. Zhang, and J.T. Chen, The Finite Element Simulation of the Friction Stir Welding Process, Metall. Mater. Trans. A, 2005, 403, p 305–316

    Google Scholar 

  3. http://www.esabna.com/us/en/education/knowledge/images/FrictionStirWeldingChart.jpg, 7 Dec. 2009

  4. H. Zhang, S.B. Lin, L. Wu, J.C. Feng, and Sh.L. Ma, Defects Formation Procedure and Mathematic Model for Defect Free Friction Stir Welding of Magnesium Alloy, Mater. Des., 2006, 27, p 805–809

    Article  CAS  Google Scholar 

  5. W.B. Lee, Y.M. Yeon, and S.B. Jung, Mechanical Properties Related to Microstructural Variation of 6061 Al Alloy Joints by Friction Stir Welding, Mater. Trans., 2004, 45(6061), p 1700–1705

    Article  CAS  Google Scholar 

  6. S.R. Ren, Z.Y. Ma, and L.Q. Chen, Effect of Welding Parameters on Tensile Properties and Fracture Behavior of Friction Stir Welded A-Mg-Si alloy, Scr. Mater., 2007, 56, p 69–72

    Article  CAS  Google Scholar 

  7. S. Lim, S. Kim, C.G. Lee, and S. Kim, Tensile Behavior of Friction-Stir-Welded Al 6061-T651, Metall. Mater. Trans. A, 2004, 35A, p 2829–2835

    Article  CAS  Google Scholar 

  8. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78

    Article  Google Scholar 

  9. F.C. Liu and Z.Y. Ma, Influence of Tool Dimension and Welding Parameters on Microstructure and Mechanical Properties of Friction-Stir-Welded 6061-T651 Aluminum Alloy, Metall. Mater. Trans. A, 2008, 39A, p 2378–2388

    Article  CAS  Google Scholar 

  10. P. Vilac, L. Quintino, and J.F. dos Santos, Analytical Thermal Model for Friction Stir Welding, J. Mater. Process. Technol., 2005, 169, p 452–465

    Article  Google Scholar 

  11. M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: An Input Torque Based Model, Sci. Technol. Weld. Join., 2003, 8(3), p 165–174

    Article  Google Scholar 

  12. H. Schmidt, J. Hattel, and J. Wert, An Analytical Model for the Heat Generation in Friction Stir Welding, Model. Simul. Mater. Sci. Eng., 2004, 12, p 143–157

    Article  Google Scholar 

  13. R. Nandan, T.J. Lienert, and T. DebRoy, Toward Reliable Calculations of Heat and Plastic Flow During Friction Stir Welding of Ti-6Al-4V Alloy, Int. J. Mater. Res., 2008, 99(4), p 434–444

    CAS  Google Scholar 

  14. R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Numerical Modelling of 3D Plastic Flow and Heat Transfer During Friction Stir Welding of Stainless Steel, Sci. Technol. Weld. Join., 2006, 11(5), p 526–537

    Article  Google Scholar 

  15. R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel, Acta Mater., 2007, 55(3), p 883–895

    Article  CAS  Google Scholar 

  16. A. Arora, R. Nandan, A.P. Reynolds, and T. DebRoy, Torque, Power Requirement and Stir Zone Geometry in Friction Stir Welding Through Modeling and Experiments, Scr. Mater., 2009, 60, p 13–16

    Article  CAS  Google Scholar 

  17. A. El-Domiaty and H. Abd El-Hafez, An Energy Model for Friction Stir Welding, Mater. Sci. Technol. Assoc. Iron Steel Technol., 2007, 3, p 1709–1721

    Google Scholar 

  18. Z. Zhang and H.W. Zhang, Numerical Studies on the Effect of Axial Pressure in Friction Stir Welding, Sci. Technol. Weld. Join., 2007, 12, p 226–248

    Article  Google Scholar 

  19. Z. Zhang and H.W. Zhang, A Fully Coupled Thermo-Mechanical Model of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2008, 37, p 279–293

    Article  Google Scholar 

  20. Z. Zhang and H.W. Zhang, Numerical Studies on Controlling of Process Parameters in Friction Stir Welding, J. Mater. Process. Technol., 2009, 209, p 241–270

    Article  CAS  Google Scholar 

  21. Z. Zhang and H.W. Zhang, Numerical Studies on the Effect of Transverse Speed in Friction Stir Welding, Mater. Des., 2009, 30, p 900–907

    Article  CAS  Google Scholar 

  22. O. Frigaad, O. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32A, p 1189–1200

    Article  Google Scholar 

  23. O.P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, and D. Allehaux, Mechanical and Thermal Modelling of Friction Stir Welding, J. Mater. Process. Technol., 2006, 171, p 348–357

    Article  CAS  Google Scholar 

  24. G. Abd El-Nasser, A. El-Bagdady, and H. Abd El-Hafez, Effect of the Friction Stir Welding Parameters on the Mechanical Properties of Al 5083 Joint, Al-Azahar Eng. 9th Int. Conf., 12–14 April 2007, Cairo, Egypt, p 356–367

  25. C.K. Alexander and M.N.O. Sadiku, Fundamentals of Electric Circuits, 2nd ed., Chap. 12, Mc-Graw-Hill, 2000

  26. M.A. Sutton, B. Yang, A.P. Reynolds, and R. Taylor, Microstructural Studies of Friction Stir Welds in 2024-T3 Aluminum, Mater. Sci. Eng., 2002, A323, p 160–166

    CAS  Google Scholar 

  27. S.A. Khodir and T. Shibayanagi, Friction Stir Welding of Dissimilar AA2024 and AA7075 Aluminum Alloys, Mater. Sci. Eng. B, 2008, 148(1–3), p 82–87

    Article  CAS  Google Scholar 

  28. K. Elangovan, V. Balasubramanian, and S. Babu, Predicting Tensile Strength of Friction Stir Welded AA6061 Aluminium Alloy Joints by a Mathematical Model, Mater. Des., 2009, 30, p 188–193

    Article  CAS  Google Scholar 

  29. C. S. Babu, A.S. El-Gizawy, and A. Sherif, Characterization of Friction Stir Welding Process Behaviour Using Numerical and Physical Modeling Techniques, Proc. of the 9th Int. Conf. Mech. Des. Prod. (MDP-9), 8–10 Jan 2008, Cairo, Egypt, p 517–530

  30. W.B. Lee, Y.M. Yeon, and S.B. Jung, Evaluation of the Microstructure and Mechanical Properties of Friction Stir Welded 6005 Aluminum Alloy, Mater. Sci. Technol., 2003, 19, p 1513–1518

    Article  CAS  Google Scholar 

  31. H. Atharifar, D. Lin, and R. Kovacevic, Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding, J. Mater. Eng. Perform., 2008, 18, p 339–350

    Article  Google Scholar 

  32. P.A. Colegrove and H.R. Shercliff, 3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile, J. Mater. Process Technol., 2005, 169, p 320–327

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abd El-Hafez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd El-Hafez, H. Mechanical Properties and Welding Power of Friction Stirred AA2024-T35 Joints. J. of Materi Eng and Perform 20, 839–845 (2011). https://doi.org/10.1007/s11665-010-9709-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9709-y

Keywords

Navigation