Skip to main content
Log in

Simulation of High-Temperature AA5083 Bulge Forming with a Hardening/Softening Material Model

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-temperature bulge forming of AA5083 aluminum sheet was simulated with the commercial finite element (FE) code ABAQUS™. A material model that is strain rate sensitive and accounts for strain hardening and softening was used. Results were compared with data from AA5083 bulge forming experiments at 450 °C where the gas pressure was a prescribed constant value. The results show that the material model is capable of predicting the deformation and thinning behavior at different constant pressure levels. In ancillary simulations, time-varying pressure profiles were computed (rather than prescribed) with an internal ABAQUS™ routine that attempts to maintain the strain rate at the bulge dome pole within a specified range. The time-varying profiles, for which no experimental AA5083 bulge forming data exist, can be programmed into existing bulge testing instrumentation to validate the associated predictions of bulge dome height and thinning. The present effort represents a necessary step toward predicting gas pressure profiles by coupling the pressure profile with a desired sheet deformation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.D. Ding, H.M. Zbib, C.H. Hamilton, A.E. Bayoumi (1997) On the stability of biaxial stretching with application to the optimization of superplastic blow-forming. J Eng Mater Technol 119:26–31.

    Article  CAS  Google Scholar 

  2. K. Siegert and S. Jaeger, Pneumatic Bulging of AZ31 Sheet Metal at Elevated Temperatures, Magnesium Technology 2004, A.A. Luo, Ed., The Minerals, Metals & Materials Society (TMS), 2004, p 87–90

  3. J.R. Bradley, Bulge Testing of Superplastic AA5083 Aluminum Sheet, Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, Eds., March 14-18, 2004 (Charlotte, North Carolina, USA), The Minerals, Metals & Materials Society (TMS), 2004, p 109–118

  4. D.M. Woo (1964) The analysis of axisymmetric forming of sheet metal and the hydrostatic bulging process. Int J Mech Sci 6:303–317

    Article  Google Scholar 

  5. F. Jovane (1968) An approximate analysis of the superplastic forming of a thin circular diaphragm: theory and experiments. Int J Mech Sci 10:403–427

    Article  Google Scholar 

  6. G.C. Cornfield, R.H. Johnson (1970) The forming of superplastic sheet metal. Int J Mech Sci 12:479–490.

    Article  Google Scholar 

  7. S.W. Chung, K. Higashi, W.J. Kim (2004) Superplastic gas pressure forming of fine grained AZ61 magnesium alloy sheet. Mater Sci Eng 372:15–20.

    Article  Google Scholar 

  8. M. Atkinson (1997) Accurate determination of biaxial stress-strain relationships from hydraulic bulging tests of sheet metals. Int J Mech Sci 39:761–769

    Article  Google Scholar 

  9. D. Banabic, M. Vulcan, K. Siegert (2005) Bulge testing under constant and variable strain rates of superplastic aluminium alloys. CIRP Annals - Manufacturing Technology 54:205–208.

    Article  Google Scholar 

  10. S.N. Patankar and T.M. Jen, Superplastic forming of commercial purity aluminum. Scripta Materialia, 38, 1997, p 145–148.

    Article  Google Scholar 

  11. Y. Luo, C. Miller, G. Luckey, P. Friedman, Y. Peng (2007) On practical forming limits in superplastic forming of aluminum sheet. J Mater Eng Perform 16(3):274–283.

    Article  CAS  Google Scholar 

  12. P.E. Krajewski, J.G Schroth (2007) Overview of quick plastic forming. Mater Sci Forum 551–552:3–12.

    Article  CAS  Google Scholar 

  13. ABAQUS™: www.simulia.com

  14. ABAQUS™ Analysis User’s Manual, Vol. 3, Version 6.5, 2004, p 11.2.4-10

  15. P.E. Krajewski and G.P. Montgomery, Mechanical Behavior and Modeling of AA5083 at 450°C, Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, Eds., March 14-18, 2004 (Charlotte, North Carolina, USA), The Minerals, Metals & Materials Society (TMS), 2004, p 341–350

  16. M.K. Khraisheh, F.K. Abu-Farha (2003) Microstructure-based modeling of anisotropic superplastic deformation. Transactions of NAMRI/SME 31:41–47.

    Google Scholar 

  17. M.N. Nazzal, M.K. Khraisheh, B. Darras (2004) Finite element modeling and optimization of superplastic forming using variable strain rate approach. ASM J Mater Eng Perform 13(6):691–699

    Article  CAS  Google Scholar 

  18. F.K. Abu-Farha, M.K. Khraisheh (2007) Analysis of superplastic deformation of AZ31 magnesium alloy. Journal of Advanced Engineering Materials (JAEM) 9(9):777–783.

    Article  CAS  Google Scholar 

  19. C.H. Caceres, D.S. Wilkinson (1984) Large strain behavior of a superplastic copper alloy-deformation. Acta Metall 32:415–422

    Article  CAS  Google Scholar 

  20. M.J. Stowell (1983) Cavity growth and failure in superplastic alloys. Metal Sci. 17:92–98.

    Article  Google Scholar 

  21. C.L. Chen, M.J. Tan ( 2001) Cavity growth and filament formation of superplastically deformed Al 7475 Alloy. Mater. Sci. Eng. A 298:235–244.

    Article  Google Scholar 

  22. Y. Chino, H. Iwasaki (2004) Cavity growth rate in superplastic 5083 Al and AZ31 Mg alloys. Journal of Materials Research 19(11):3382–3388

    Article  CAS  Google Scholar 

  23. F. Li, D.H. Bae, A.K. Ghosh (1997) Grain elongation and anisotropic grain growth during superplastic deformation in an Al-Mg-Mn-Cu alloy. Acta Mater 45(9):3887–3895.

    Article  CAS  Google Scholar 

  24. M.A. Khaleel, M.T. Smith, A.L. Lund (1997) Cavitation during multiaxial deformation of superplastic forming. Mater. Sci. Forum 243–245:155–160.

    Article  CAS  Google Scholar 

  25. E. Tanaka, S. Murakami, H. Ishikawa (1997) Constitutive modeling of superplasticity taking account of grain and cavity growth. Mater. Sci. Forum 233–234:21–28.

    Article  CAS  Google Scholar 

  26. H. Iwasaki, T. Mori, T. Tagata, M. Masatu, K. Higashi (1997) Cavitation in Superplastic Al-Mg Alloy. Mater Sci Forum 233–234:81–88.

    Article  CAS  Google Scholar 

  27. S.C. Rama, N. Chandra (1991) Development of a pressure prediction method for superplastic forming processes. Int J Non-Linear Mechanics 26:711–725.

    Article  Google Scholar 

  28. S.G. Luckey, P.A. Friedman, and Z.C. Xia, Aspects of Element Formulation and Strain Rate Control in the Numerical Modeling of Superplastic Forming, Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, Eds., March 14-18, 2004 (Charlotte, North Carolina, USA), The Minerals, Metals & Materials Society (TMS), 2004, p 371–380

  29. H. Samekto and K. Roll, Finite Element Analysis of Superplastic Forming Process Using LS-DYNA, 4th European LS-DYNA Users Conference, May 22-23, 2003 (Ulm, Germany), DYNAmore, 2003, p E-11-01–E-11-16

Download references

Acknowledgment

The financial support of the National Science Foundation, CAREER award # DMI-0238712 and General Motors Corporation (GM) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.S. Jarrar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarrar, F., Abu-Farha, F., Hector, L. et al. Simulation of High-Temperature AA5083 Bulge Forming with a Hardening/Softening Material Model. J. of Materi Eng and Perform 18, 863–870 (2009). https://doi.org/10.1007/s11665-008-9322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-008-9322-5

Keywords

Navigation