Skip to main content
Log in

Dielectric Response and Low Dielectric Loss of Gadolinium-Doped CaCu3Ti4O12 Ceramics Processed Through Conventional and Microwave Sintering

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gadolinium-doped (CaCu3Ti4O12/CCTO)x ceramics were fabricated using conventional (CS) and microwave sintering (MWS) at x = 0.1, 0.2 and 0.3. The green compacts were sintered at 1100°C via muffle and microwave furnace at 5°C min−1/12 h and 50°C min−1/30 min, respectively. A single pure cubic phase of CCTO for MWS and minor secondary phases for CS were revealed by x-ray diffraction (XRD) patterns. Scanning electron microscope (SEM) images showed a reduction in grain size from ~ 20.04 ± 8.43 µm to ~ 17.52 ± 7.77 µm and ~ 1.99 ± 0.44 µm to ~ 1.32 ± 0.27 µm for both CS and MWS. The charge carrier hopping between Cu+ and Ti3+ was probed using x-ray photoelectron spectroscopy (XPS), which confirmed the conductivity of grains and internal barrier layer capacitance (IBLC) effect. Broadband dielectric spectrometer findings revealed a dielectric constant of ɛ > 104 at 10 Hz and ɛ > 103 at 100 kHz for CS at x = 0.2 and ɛ > 102 at 10 Hz (x ≤ 0.2) for MWS. A very minimal tanδ of 0.08 (x = 0.2) was recorded at 100 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.C. Ferrarelli, D.C. Sinclair, A.R. West, H.A. Dabkowska, A. Dabkowski, and G.M. Luke, Comment on the origin(s) of the giant permittivity effect in CaCu3Ti4O12 single crystals and ceramics. J. Mater. Chem. 19, 5916 (2009).

    Article  CAS  Google Scholar 

  2. J. Wang, X. Chao, G. Li, L. Feng, and K. Zhao, Fabrication and enhanced characterization of copper powder filled copper calcium titanate/poly(vinylidene difluoride) composite. J. Mater. Sci.: Mater. Electron. 28, 5435 (2016).

    Google Scholar 

  3. S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, and C.L. Wang, Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys. 99, 084106 (2006).

    Article  Google Scholar 

  4. Y. Qu, Y. Wu, G. Fan, P. Xie, Y. Liu, Z. Zhang, J. Xin, Q. Jiang, K. Sun, and R. Fan, Tunable radio-frequency negative permittivity of carbon/ CaCu3Ti4O12 metacomposites. J. Alloy Compd. 834, 155164 (2020).

    Article  CAS  Google Scholar 

  5. B. Ding, J. Lin, F. Wan, Y. Qu, J. Wu, K. Sun, and R. Fan, Communication—tunable epsilon-negative property of nickel/copper calcium titanate cermets. ECS J. Solid State Sci. Technol. 9, 123004 (2020).

    Article  CAS  Google Scholar 

  6. R. Ma, C. Cheng, Y. Qu, and R. Fan, Tailorable negative permittivity of graphene-carbon nanotube/copper calcium titanate metacomposites. Ceram. Int. 47, 9971 (2021).

    Article  CAS  Google Scholar 

  7. A. Chattopadhyay and J. Nayak, Improvement of humidity sensing performance and dielectric response through PH variation in CaCu3Ti4O12 ceramics. Sens. Actuators A 341, 113603 (2022).

    Article  CAS  Google Scholar 

  8. R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, and S. Lin, Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 3, 062126 (2013).

    Article  Google Scholar 

  9. Y. Li, P. Liang, X. Chao, and Z. Yang, Preparation of CaCu3Ti4O12 ceramics with low dielectric loss and giant dielectric constant by the sol–gel technique. Ceram. Int. 39, 7879 (2013).

    Article  CAS  Google Scholar 

  10. J. Boonlakhorn and P. Thongbai, Substantially enhanced varistor properties and dielectric response in (Zn2+, Sn4+) co-doped CaCu3Ti4O12 ceramics. Ceram. Int. 45, 22596 (2019).

    Article  Google Scholar 

  11. U. Bhardwaj, A. Sharma, V. Gupta, and H.S. Kushwaha, High energy storage capabilities of CaCu3Ti4O12 for paper-based zinc–air battery. Sci. Rep. 12(1), 3999 (2022).

    Article  CAS  Google Scholar 

  12. H.S. Kushwaha, N.A. Madhar, B. Ilahi, P. Thomas, A. Halder, and R. Vaish, Efficient solar energy conversion using CaCu3Ti4O12 photoanode for photocatalysis and photoelectrocatalysis. Sci. Rep. 6, 18557 (2016).

    Article  CAS  Google Scholar 

  13. M. Wang, J. Liu, C. Xu, and L. Feng, Sonocatalysis and sono-photocatalysis in CaCu3Ti4O12 ceramics. Ceram. Int. 48, 11338 (2022).

    Article  CAS  Google Scholar 

  14. N.U. Saqib, I. Shah, and R. Adnan, An emerging photocatalyst for wastewater remediation: a mini-review on CaCu3Ti4O12 photocatalysis. Environ. Sci. Pollut. Res. 29, 40403 (2022).

    Article  CAS  Google Scholar 

  15. J.H. Clark, M.S. Dyer, R.G. Palgrave, C.P. Ireland, J.R. Darwent, J.B. Claridge, and M.J. Rosseinsky, Visible light photo-oxidation of model pollutants using CaCu3Ti4O12: an experimental and theoretical study of optical properties, electronic structure, and selectivity. J. Am. Chem. Soc. 133, 1016 (2010).

    Article  Google Scholar 

  16. R.M. Ramadan, A.M. Labeeb, A.A. Ward, and A.M. Ibrahim, New approach for synthesis of nano-sized CaCu3Ti4O12 powder by economic and innovative method. J. Mater. Sci.: Mater. Electron. 31, 9065 (2020).

    CAS  Google Scholar 

  17. D.M. Supriya, M.R. Rajani, A.R. Phani, C.V. Naveen, and R. Ravishankar, Synthesis of CCTO and doped CCTO nanopowders and its applications in the field of electronics. Mater. Today: Proc. 4, 12021 (2017).

    Google Scholar 

  18. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S.M. Shapiro, Giant dielectric constant response in a copper-titanate. Solid State Commun. 115, 217 (2000).

    Article  CAS  Google Scholar 

  19. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006).

    Article  CAS  Google Scholar 

  20. H. Yu, H. Liu, D. Luo, and M. Cao, Microwave synthesis of high dielectric constant CaCu3Ti4O12. J. Mater. Process. Technol. 208, 145 (2008).

    Article  CAS  Google Scholar 

  21. P. Thomas, K. Dwarakanath, K.B. Varma, and T.R. Kutty, Synthesis of nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J. Therm. Anal. Calorim. 95, 267 (2008).

    Article  Google Scholar 

  22. G. Riquet, S. Marinel, Y. Breard, C. Harnois, and A. Pautrat, Direct and hybrid microwave solid state synthesis of CaCu3Ti4O12 ceramic: microstructures and dielectric properties. Ceram. Int. 44, 15228 (2018).

    Article  CAS  Google Scholar 

  23. W. Wan, C. Liu, H. Sun, Z. Luo, W.-X. Yuan, H. Wu, and T. Qiu, Low-toxic gelcasting of giant dielectric-constant CaCu3Ti4O12 ceramics from the molten salt powder. J. Eur. Ceram. Soc. 35, 3529 (2015).

    Article  CAS  Google Scholar 

  24. R. Löhnert, R. Schmidt, and J. Töpfer, Effect of sintering conditions on microstructure and dielectric properties of CaCu3Ti4O12 (CCTO) ceramics. J. Electroceram. 34, 241 (2015).

    Article  Google Scholar 

  25. J. Zhao, H. Zhao, and Z. Zhu, Influence of sintering conditions and CuO loss on dielectric properties of CaCu3Ti4O12 ceramics. Mater. Res. Bull. 113, 97 (2019).

    Article  CAS  Google Scholar 

  26. B.A. Bender and M.-J. Pan, The effect of processing on the giant dielectric properties of CaCu3Ti4O12. Mater. Sci. Eng. B 117, 339 (2005).

    Article  Google Scholar 

  27. G. Riquet, S. Marinel, Y. Bréard, and C. Harnois, Sintering mechanism and grain growth in CaCu3Ti4O12 ceramics. Ceram. Int. 45, 9185 (2019).

    Article  CAS  Google Scholar 

  28. I.K. Lloyd, Y. Carmel, O.C. Wilson Jr., and G.F. Xu, Microwave processing of ceramics. Adv. Sci. Technol. 45, 857 (2006).

    Article  CAS  Google Scholar 

  29. A. Borrell and M.D. Salvador, Advanced ceramic materials sintered by microwave technology. Sinter. Technol. Method Appl. 10, 3 (2018).

    Google Scholar 

  30. K.I. Rybakov, E.A. Olevsky, and E.V. Krikun, Microwave sintering: fundamentals and modeling. J. Am. Ceram. Soc. 96, 1003 (2013).

    Article  CAS  Google Scholar 

  31. M.A. Ramírez, P.R. Bueno, E. Longo, and J.A. Varela, Conventional and microwave sintering of CaCu3Ti4O12/CaTiO3 ceramic composites: non-ohmic and dielectric properties. J. Phys. D Appl. Phys. 41, 152004 (2008).

    Article  Google Scholar 

  32. M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloy Compd. 494, 175 (2010).

    Article  CAS  Google Scholar 

  33. J. Boonlakhorn, N. Chanlek, J. Manyam, P. Srepusharawoot, S. Krongsuk, and P. Thongbai, Enhanced giant dielectric properties and improved nonlinear electrical response in acceptor-donor (Al3+, Ta5+)-substituted CaCu3Ti4O12 ceramics. J. Adv. Ceram. 10, 1243 (2021).

    Article  CAS  Google Scholar 

  34. J. Boonlakhorn, N. Chanlek, P. Thongbai, and P. Srepusharawoot, Strongly enhanced dielectric response and structural investigation of (Sr2+, Ge4+) co-doped CCTO ceramics. J. Phys. Chem. C 124, 20682 (2020).

    Article  CAS  Google Scholar 

  35. R. Xue, Z. Chen, H. Dai, D. Liu, T. Li, and G. Zhao, Effects of rare earth ionic doping on microstructures and electrical properties of CaCu3Ti4O12 ceramics. Mater. Res. Bull. 66, 254 (2015).

    Article  CAS  Google Scholar 

  36. L. Liu, L. Fang, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, and C. Hu, Dielectric and nonlinear current–voltage characteristics of rare-earth doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 110, 094101 (2011).

    Article  Google Scholar 

  37. C. Mu, H. Zhang, Y. Liu, Y. Song, and P. Liu, Rare earth doped CaCu3Ti4O12 electronic ceramics for high frequency applications. J. Rare Earths 28, 43 (2010).

    Article  CAS  Google Scholar 

  38. T.G. Evangeline and A.R. Annamalai, Influence of heating modes on the microstructural and dielectric properties of calcium copper titanium oxide (CaCu3Ti4O12/CCTO) using conventional and microwave sintering. J. Mater. Sci.: Mater. Electron. 33, 5806 (2022).

    CAS  Google Scholar 

  39. R. Kashyap, O.P. Thakur, and R.P. Tandon, Study of structural, dielectric and electrical conduction behaviour of Gd substituted CaCu3Ti4O12 ceramics. Ceram. Int. 38, 3029 (2012).

    Article  CAS  Google Scholar 

  40. K. Chen, W. Li, Y. Liu, P. Bao, X. Lu, and J. Zhu, Investigation of size effect on the giant dielectric CaCu3Ti4O12 ceramic. Integr. Ferroelectr. 67, 13 (2004).

    Article  CAS  Google Scholar 

  41. T. Gecil Evangeline and A. Raja Annamalai, Dielectric properties of conventional and microwave sintered lanthanum doped CaCu3Ti4O12 ceramics for high-frequency applications. Ceram. Int. 48, 25705 (2022).

    Article  CAS  Google Scholar 

  42. T.B. Adams, D.C. Sinclair, and A.R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14, 1321 (2002).

    Article  CAS  Google Scholar 

  43. D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 (2002).

    Article  CAS  Google Scholar 

  44. T.-T. Fang and H.-K. Shiau, Mechanism for developing the boundary barrier layers of CaCu3Ti4O12. J. Am. Ceram. Soc. 87, 2072 (2005).

    Article  Google Scholar 

  45. J. Boonlakhorn, J. Prachamon, J. Jumpatam, S. Krongsuk, P. Thongbai, and P. Srepusharawoot, Dielectric characteristics of a (Cd2+, F) Co-doped CaCu3Ti4O12/CaTiO3 binary system improved with increased dielectric permittivity and decreased dielectric loss tangent. Results Phys. 34, 105275 (2022).

    Article  Google Scholar 

  46. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, and J. Wong-Leung, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12, 821 (2013).

    Article  CAS  Google Scholar 

  47. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, and A.W. Sleight, High Dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323 (2000).

    Article  CAS  Google Scholar 

  48. N.B. Singh, M. Gillan, D. House, R. Yanamaddi, V. Razdan, and B. Arnold, Effect of substitution and impurities on dielectric properties and resistivity of CaCu3Ti4O12. Emerg. Mater. Res. 2, 344 (2013).

    CAS  Google Scholar 

  49. Z.P. Chen, H.F. He, T. Li, H.Y. Dai, and Z.Q. Chen, Modulation of the dielectric properties of CaCu3Ti4O12 system with Gd-substitution. Defect Diffus. Forum 373, 213 (2017).

    Article  Google Scholar 

  50. J. Yang, M. Shen, and L. Fang, The electrode/sample contact effects on the dielectric properties of the CaCu3Ti4O12 ceramic. Mater. Lett. 59, 3990 (2005).

    Article  CAS  Google Scholar 

  51. L. Zhang, Electrode and grain-boundary effects on the conductivity of CaCu3Ti4O12. Appl. Phys. Lett. 87, 022907 (2005).

    Article  Google Scholar 

  52. J. Jumpatam, J. Prachamon, J. Boonlakhorn, N. Phromviyo, N. Chanlek, and P. Thongbai, Giant dielectric behavior and non-ohmic properties in Mg2++F co-doped CaCu3Ti4O12 ceramics. J. Asian Ceram. Soc. 10, 414 (2022).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge VIT Vellore for providing a VIT Seed Grant to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Raja Annamalai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gecil Evangeline, T., Raja Annamalai, A. & Ctibor, P. Dielectric Response and Low Dielectric Loss of Gadolinium-Doped CaCu3Ti4O12 Ceramics Processed Through Conventional and Microwave Sintering. J. Electron. Mater. 52, 3848–3858 (2023). https://doi.org/10.1007/s11664-023-10341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10341-w

Keywords

Navigation