Skip to main content
Log in

Switchable Polarization Converter with Switching Function Based on Graphene and Vanadium Dioxide

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A switchable polarization converter based on a graphene–vanadium dioxide (VO2) metamaterial is proposed, which is capable of switching between transmission mode and reflection mode. The proposed structure consists of a graphene resonator placed along the diagonal, a dielectric layer of SiO2, and a VO2 substrate with a metal grating. By changing the Fermi level of the graphene and the state of the VO2 , the simulation results show that the polarization converter can operate in the switching state, whether it is a transmission mode or a reflection mode. When the VO2 is in the insulating state, the transmitted polarization conversion ratio (\({\text{PCR}}_{t}\)) can be tuned to below 2% (off-state) and above 99.5% (on-state) from 3.00 to 6.00 THz by controlling the graphene. When the VO2 operates in the metallic state, the reflected \({\text{PCR}}_{r}\) can achieve nearly 0 (off-state) and larger than 90.0% (on-state) from 3.76 THz to 4.15 THz by controlling the Fermi level of the graphene. In addition, the designed structure can maintain a stable performance during the reflected polarization conversion within the incidence angle of 60°. Furthermore, we believe that this switchable polarization converter with a switching function has potential application prospects in high-density integrated and switching devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Yang, Y. Xiao, M. Xiao, and S. Li, 6G Wireless communications: vision and potential techniques. IEEE Netw. 33, 70 (2019).

    Article  Google Scholar 

  2. J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 163, 34 (2020).

    Article  CAS  Google Scholar 

  3. J. Li, J. Li, C. Zheng, S. Wang, M. Li, H. Zhao, J. Li, Y. Zhang, and J. Yao, Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon 172, 189 (2021).

    Article  CAS  Google Scholar 

  4. S.K. Patel, J. Surve, V. Katkar, J. Parmar, F.A. Al-Zahrani, K. Ahmed, and F.M. Bui, Encoding and tuning of THz metasurface-based refractive index sensor with behavior prediction using XGBoost regressor. IEEE Access. 10, 24797 (2022).

    Article  Google Scholar 

  5. F. Li, T. Tang, Y. Mao, L. Luo, J. Li, J. Xiao, K. Liu, J. Shen, C. Li, and J. Yao, Metal–graphene hybrid chiral metamaterials for tunable circular dichroism. Ann. Phys. 532, 2000065 (2020).

    Article  CAS  Google Scholar 

  6. J. Li, J. Li, C. Zheng, Z. Yue, S. Wang, M. Li, H. Zhao, Y. Zhang, and J. Yao, Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene–metal terahertz metasurfaces. Carbon 182, 506 (2021).

    Article  CAS  Google Scholar 

  7. J. Tian, R. Ke, R. Yang, and W. Pei, Tunable quad-band perfect metamaterial absorber on the basis of monolayer graphene pattern and its sensing application. Results Phys. 26, 104447 (2021).

    Article  Google Scholar 

  8. X. Xu, R. Xu, and Y.S. Lin, A voltage-controllable VO(2) based metamaterial perfect absorber for CO(2) gas sensing application. Nanoscale 14, 2722 (2022).

    Article  Google Scholar 

  9. X. Huang, X. Ma, X. Li, J. Fan, L. Guo, and H. Yang, Simultaneous realization of polarization conversion for reflected and transmitted waves with bi-functional metasurface. Sci Rep. 12, 2368 (2022).

    Article  CAS  Google Scholar 

  10. S. Xiao, J. Wang, F. Liu, S. Zhang, X. Yin, and J. Li, Spin-dependent optics with metasurfaces. Nanophotonics 6, 215 (2017).

    Article  Google Scholar 

  11. Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, A Tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv. Opt. Mater. 8, 1901548 (2020).

    Article  CAS  Google Scholar 

  12. X. Cai, R. Tang, H. Zhou, Q. Li, S. Ma, D. Wang, T. Liu, X. Ling, W. Tan, Q. He, S. Xiao, and L. Zhou, Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv. Photon. 3, 036003 (2021).

    Article  CAS  Google Scholar 

  13. F.-Y. Yu, X.-J. Shang, W. Fang, Q.-Q. Zhang, Y. Wu, W. Zhao, J.-F. Liu, Q.-Q. Song, C. Wang, J.-B. Zhu, and X.-B. Shen, A Terahertz Tunable metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics 17, 823 (2022).

    Article  CAS  Google Scholar 

  14. F.-Y. Yu, J.-B. Zhu, and X.-B. Shen, Tunable and reflective polarization converter based on single-layer vanadium dioxide-integrated metasurface in terahertz region. Opt. Mater. 123, 111745 (2022).

    Article  CAS  Google Scholar 

  15. B. Ratni, A. de Lustrac, G.-P. Piau, and S.N. Burokur, Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface. Appl. Phys. Lett. 111, 214101 (2017).

    Article  Google Scholar 

  16. H. Zou, Z. Xiao, W. Li, and C. Li, Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region. Appl. Phys. A. 124, 321 (2018).

    Article  Google Scholar 

  17. L. Wang, N. An, X. He, X. Zhang, A. Zhu, B. Yao, and Y. Zhang, Dynamic and active THz graphene metamaterial devices. Nanomaterials (Basel) 12, 2097 (2022).

    Article  Google Scholar 

  18. M. Chen and Z. Xiao, Metal-graphene hybrid terahertz metamaterial based on dynamically switchable electromagnetically induced transparency effect and its sensing performance. Diam. Relat. Mater. 124, 108935 (2022).

    Article  CAS  Google Scholar 

  19. Y. Zhang, Y. Feng, and J. Zhao, Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave. Carbon 163, 244 (2020).

    Article  CAS  Google Scholar 

  20. X. Yuan, J. Chen, J. Wu, X. Yan, Y. Zhang, and X. Zhang, Graphene-based tunable linear and linear-to-circular polarization converters in the THz band. Results Phys. 37, 105571 (2022).

    Article  Google Scholar 

  21. M. Liu, H.Y. Hwang, H. Tao, A.C. Strikwerda, K. Fan, G.R. Keiser, A.J. Sternbach, K.G. West, S. Kittiwatanakul, J. Lu, S.A. Wolf, F.G. Omenetto, X. Zhang, K.A. Nelson, and R.D. Averitt, Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345 (2012).

    Article  CAS  Google Scholar 

  22. H. Zhang, C. Yang, M. Liu, and Y. Zhang, Dual-function tuneable asymmetric transmission and polarization converter in terahertz region. Results Phys. 25, 104242 (2021).

    Article  Google Scholar 

  23. Y. Jiang, M. Zhang, W. Wang, and Z. Song, Reflective and transmissive cross-polarization converter for terahertz wave in a switchable metamaterial. Phys. Scr. 97, 015501 (2022).

    Article  Google Scholar 

  24. D. Yan, Q. Feng, Z. Yuan, M. Meng, X. Li, G. Qiu, and J. Li, Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface. Chin. Phys. B. 31, 014211 (2022).

    Article  Google Scholar 

  25. L. Qi, C. Liu, and S.M. Ali Shah, A broad dual-band switchable graphene-based terahertz metamaterial absorber. Carbon 153, 179 (2019).

    Article  CAS  Google Scholar 

  26. M. Chen, Z. Xiao, Z. Cui, and Q. Xu, Dynamically switchable dual-band absorber based on electromagnetically induced reflection in metal–graphene hybrid metamaterial. Opt. Commun. 502, 127123 (2022).

    Article  Google Scholar 

  27. D. Wu, M. Wang, H. Feng, Z. Xu, Y. Liu, F. Xia, K. Zhang, W. Kong, L. Dong, and M. Yun, Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene. Carbon 155, 618 (2019).

    Article  CAS  Google Scholar 

  28. T. Wang, Y. Zhang, H. Zhang, and M. Cao, Dual-controlled switchable broadband terahertz absorber based on a graphene–vanadium dioxide metamaterial. Opt. Mater. Express 10, 369 (2020).

    Article  CAS  Google Scholar 

  29. Z. Song, Y. Deng, Y. Zhou, and Z. Liu, Terahertz toroidal metamaterial with tunable properties. Opt. Express 27, 5792 (2019).

    Article  CAS  Google Scholar 

  30. B. Tang and Y. Ren, Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide-graphene integrated configuration. Phys Chem Chem Phys. 24, 8408 (2022).

    Article  CAS  Google Scholar 

  31. C. Menzel, C. Helgert, C. Rockstuhl, E.B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett. 104, 253902 (2010).

    Article  CAS  Google Scholar 

  32. Z. Cui, Z. Xiao, M. Chen, F. Lv, and Q. Xu, All-dielectric transmission type three-frequency linearly polarized to circularly polarized converter. Waves Random Complex Media. 1, 1971324 (2021).

    Google Scholar 

  33. Z. Sun, X. Wang, J. Wang, H. Li, Y. Lu, and Y. Zhang, Switchable multifunctional terahertz metamaterials based on the phase-transition properties of vanadium dioxide. Micromachines (Basel) 13, 1 (2022).

    Google Scholar 

Download references

Acknowledgments

This work is supposed by the National Natural Science Foundation of China (Grant No.61275070) and Shanghai Natural Science Foundation (Grant No. 15ZR1415900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyin Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Jiang, X., Wang, X. et al. Switchable Polarization Converter with Switching Function Based on Graphene and Vanadium Dioxide. J. Electron. Mater. 52, 1968–1976 (2023). https://doi.org/10.1007/s11664-022-10149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10149-0

Keywords

Navigation