Skip to main content
Log in

Fabrication of Ti/TiO2/SnO2-Sb-Ir/SnO2-Sb-Ni Using Three Kinds of TiO2 Interlayer and an Optimized TiO2-Nanotube Interlayer-Based Anode for Electrochemical Treatment of Wastewater

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ti/TiO2/SnO2-Sb-Ir/SnO2-Sb-Ni electrodes modified with three kinds of TiO2 interlayer materials were fabricated. TiO2 macroporous membrane (MAc) substrate was prepared by direct calcination, and TiO2 nanotubes (NTs) and TiO2 mesoporous membrane (MEs) substrate were fabricated by anodic oxidation under different conditions. The study shows that the TiO2-nanotube-based anode reduces crack morphology and provides a larger surface area for loading the electrochemically active materials. TiO2-NTs as the optimized interlayer improve the oxygen evolution potential (OEP) from 1.49 to 1.85 V and increase the current density of the oxidation peak from 0.28 to 0.55 mA cm−2, which enhances the oxidative degradation ability of the electrode. In addition, the service life of the Ti/TiO2-NTs/SnO2-Sb-Ir/SnO2-Sb-Ni electrodes is 3.18 times longer than that of the Ti/SnO2-Sb-Ir/SnO2-Sb-Ni electrodes according to accelerated life tests. The degradation rate of methylene blue (MB) wastewater with an initial concentration of 20 mg L−1 reaches 99.14% under 5.0 V within 5 min by using Ti/TiO2-NTs/SnO2-Sb-Ir/SnO2-Sb-Ni electrodes, which is 1.67 times more than that of the Ti/SnO2-Sb-Ir/SnO2-Sb-Ni electrodes.

Graphical Abstract

Ti/SnO2-Sb-Ir/SnO2-Sb-Ni electrodes modified with three kinds of TiO2 interlayer have been fabricated. The service life of the optimized Ti/TiO2-NTs/SnO2-Sb-IrO2/SnO2-Sb-Ni electrode is 3.18 times longer than that of the Ti/SnO2-Sb-Ir/SnO2-Sb-Ni electrodes. The degradation rate of the optimized electrode reaches 99.1 % within 5 min, which is 1.67 times more than that of the Ti/SnO2-Sb-Ir/SnO2-Sb-Ni electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Yao, B. Ren, Y. Yang, C. Huang, and M. Li, Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process. J. Hazard. Mater. 361, 141–151 (2019).

    Article  CAS  Google Scholar 

  2. S.J. Deng, Y. Dai, Y. Situ, D.F. Liu, and H. Huang, Preparation of nanosheet-based spherical Ti/SnO2-Sb electrode by in-situ hydrothermal method and its performance in the degradation of methylene blue. Electrochim. Acta 398, 139335 (2021).

    Article  CAS  Google Scholar 

  3. A.G. Gutierrez-Mata, S. Velazquez-Martinez, A. Alvarez-Gallegos, M. Ahmadi, J.A. Hernandez-Perez, F. Ghanbari, and S. Silva-Martinez, Recent overview of solar photocatalysis and solar photo-fenton processes for wastewater treatment. Int. J. Photoenergy 2017, 1–27 (2017).

    Article  Google Scholar 

  4. F.X. Chen, C.Y. Yang, and J.D. Wang, A comparison of electrolysis and Fenton reaction pretreatment methods for dye wastewater. Desalin. Water. Treat 52, 4547–4552 (2014).

    Article  CAS  Google Scholar 

  5. M.C. Collivignarelli, A. Abba, M.C. Miino, and S. Damiani, Treatments for color removal from wastewater: state of the art. J. Environ. Manag. 236, 727–745 (2019).

    Article  CAS  Google Scholar 

  6. Y. Liu, X. Meng, C. Li, Y. Gong, J. Wang, and J. Bo, Electrochemical degradation of pharmaceuticals using Ti/SnO2-Sb2O5-IrO2-RuO2 anode: electrode properties, performance and contributions of diverse reactive species. J. Electrochem. Soc. 167, 143503 (2020).

    Article  CAS  Google Scholar 

  7. M.E.H. Bergmann, A.S. Koparal, and T. Iourtchouk, Electrochemical advanced oxidation processes, formation of halogenate and perhalogenate species: a critical review. Crit. Rev. Environ. Sci. Technol. 44, 348–390 (2014).

    Article  CAS  Google Scholar 

  8. X.P. Zhu, J.R. Ni, and P. Lai, Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Res. 43, 4347–4355 (2009).

    Article  CAS  Google Scholar 

  9. A. Thiam, I. Sires, J.A. Garrido, R.M. Rodriguez, and E. Brillas, Decolorization and mineralization of allura red AC aqueous solutions by electrochemical advanced oxidation processes. J. Hazard. Mater. 290, 34–42 (2015).

    Article  CAS  Google Scholar 

  10. A. Buthiyappan, A.R.A. Aziz, and W.M.A.W. Daud, Degradation performance and cost implication of UV-integrated advanced oxidation processes for wastewater treatments. Rev. Chem. Eng. 31, 263–302 (2015).

    Article  CAS  Google Scholar 

  11. B. Bethi, S.H. Sonawane, B.A. Bhanvase, and S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem. Eng. Process. 109, 178–189 (2016).

    Article  CAS  Google Scholar 

  12. D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu, and L. Yang, Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 275, 130104 (2021).

    Article  CAS  Google Scholar 

  13. F. Cao, J. Tan, S. Zhang, H. Wang, C. Yao, Y. Li, and J. Chen, Preparation and recent developments of Ti/SnO2-Sb electrodes. J. Chem. 2021, 1–13 (2021).

    CAS  Google Scholar 

  14. M.C. Medeiros, J.B. de Medeiros, C.A. Martínez-Huitle, T.M.B.F. Oliveira, S.E. Mazzetto, F.F.M. da Silva, and S.S.L. Castro, Long-chain phenols oxidation using a flow electrochemical reactor assembled with a TiO2-RuO2-IrO2 DSA electrode. Sep. Purif. Technol. 264, 118425 (2021).

    Article  CAS  Google Scholar 

  15. H. Kong, W. Huang, H. Lin, H. Lu, and W. Zhang, Effect of SnO2-Sb2O5 interlayer on electrochemical performances of a Ti-substrate lead dioxide electrode. Chin. J. Chem. 30, 2059–2065 (2012).

    Article  CAS  Google Scholar 

  16. M. Faraji, Three-dimensional nanostructures of multiwalled carbon nanotubes/graphene oxide/TiO2 nanotubes for supercapacitor applications. Appl. Phys. A 122, 697 (2016).

    Article  Google Scholar 

  17. J.B. Parsa, M. Abbasi, and A. Cornell, Improvement of the current efficiency of the Ti/Sn-Sb-Ni Oxide electrode via carbon nanotubes for ozone generation. J. Electrochem. Soc. 159, D265–D269 (2012).

    Article  CAS  Google Scholar 

  18. Y. Wang, C.C. Shen, M.M. Zhang, B.T. Zhang, and Y.G. Yu, The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: Influencing factors, reaction pathways and energy demand. Chem. Eng. J. 296, 79–89 (2016).

    Article  CAS  Google Scholar 

  19. J. Meng, D. Li, L. Zhang, W. Gao, K. Huang, C. Geng, Y. Guan, H. Ming, W. Jiang, and J. Liang, Degradation of norfloxacin by electrochemical oxidation using Ti/SnO2-Sb electrode doped with Ni or Mo. Electrocatalysis 12, 436–446 (2021).

    Article  CAS  Google Scholar 

  20. X. Li, J. Yan, and K.G. Zhu, Effects of IrO2 interlayer on the electrochemical performance of Ti/Sb-SnO2 electrodes. J. Electroanal. Chem. 878, 114471 (2020).

    Article  CAS  Google Scholar 

  21. Y.H. Cui, Y.J. Feng, and Z.Q. Liu, Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes. Electrochimi. Acta 54, 4903–4909 (2009).

    Article  CAS  Google Scholar 

  22. H.Z. Zhao, Y. Sun, L.N. Xu, and J.R. Ni, Removal of Acid Orange 7 in simulated wastewater using a three-dimensional electrode reactor: removal mechanisms and dye degradation pathway. Chemosphere 78, 46–51 (2010).

    Article  CAS  Google Scholar 

  23. L. Yan, H.Z. Ma, B. Wang, Y.F. Wang, and Y.S. Chen, Electrochemical treatment of petroleum refinery wastewater with three-dimensional multi-phase electrode. Desalination 276, 397–402 (2011).

    Article  CAS  Google Scholar 

  24. Y.P. He, W.M. Huang, R.L. Chen, W.L. Zhang, and H.B. Lin, Enhanced electrochemical oxidation of organic pollutants by boron-doped diamond based on porous titanium. Sep. Purif. Technol. 149, 124–131 (2015).

    Article  CAS  Google Scholar 

  25. Y. Mei, J. Chen, H. Pan, F.L. Hao, and J.C. Yao, Electrochemical oxidation of triclosan using Ti/TiO2 NTs/Al-PbO2 electrode: reaction mechanism and toxicity evaluation. Environ. Sci. Pollut. Res. 28, 26479–26487 (2021).

    Article  CAS  Google Scholar 

  26. Y.R. Li, S. Wang, Y.J. Dong, P. Mu, Y. Yang, X.Y. Liu, C.J. Lin, and Q.L. Huang, Effect of size and crystalline phase of TiO2 nanotubes on cell behaviors: a high throughput study using gradient TiO2 nanotubes. Bioact. Mater. Med. 5, 1062–1070 (2020).

    Google Scholar 

  27. Y.Y. Feng, H.H.M. Rijnaarts, D. Yntema, Z.J. Gong, D.D. Dionysiou, Z.R. Cao, S.Y. Miao, Y.L. Chen, Y. Ye, and Y.H. Wang, Applications of anodized TiO2 nanotube arrays on the removal of aqueous contaminants of emerging concern: a review. Water Res. 186, 116327 (2020).

    Article  CAS  Google Scholar 

  28. P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy, A.V. Raghu, and C.V. Reddy, Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrog Energy 45, 7764–7778 (2020).

    Article  CAS  Google Scholar 

  29. Z. Wang, M. Xu, F. Wang, X. Liang, Y. Wei, Y. Hu, C.G. Zhu, and W. Fang, Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO modified Ti/TiO2 NTs substrate for the electrocatalytic degradation of phenol wastewater. Electrochim. Acta 247, 535–547 (2017).

    Article  CAS  Google Scholar 

  30. M. Xu, Y.L. Mao, W.L. Song, X.M. OuYang, Y.H. Hu, Y.J. Wei, C.G. Zhu, W.Y. Fang, B.C. Shao, R. Lu, and F.W. Wang, Preparation and characterization of Fe-Ce co-doped Ti/TiO2-NTs/PbO2 nanocomposite electrodes for efficient electrocatalytic degradation of organic pollutants. J. Electroanal. Chem. 823, 193–202 (2018).

    Article  CAS  Google Scholar 

  31. X. Li, P.Z. Duan, J.W. Lei, Z.R. Sun, and X. Hu, Fabrication of Ti/TiO2/SnO2-Sb-Cu electrode for enhancing electrochemical degradation of ceftazidime in aqueous solution. J. Electroanal. Chem. 847, 113231 (2019).

    Article  CAS  Google Scholar 

  32. L.T. Tuyen, D.A. Quang, T.T.T. Toan, T.Q. Tung, T.T. Hoa, T.X. Mau, and D.Q. Khieu, Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic degradation of methylene blue. J. Environ. Chem. Eng. 6, 5999–6011 (2018).

    Article  CAS  Google Scholar 

  33. C. Hu, Q. Zhao, G.L. Zang, J.T. Luo, and Q. Liu, Preparation and characterization of a novel Ni-doped TiO2 nanotube-modified inactive electrocatalytic electrode for the electrocatalytic degradation of phenol wastewater. Electrochim. Acta 405, 139758 (2022).

    Article  CAS  Google Scholar 

  34. L. He, C.R. Wang, X.Y. Chen, L.X. Jiang, Y.X. Ji, H.Y. Li, Y.S. Liu, and J.B. Wang, Preparation of Tin-Antimony anode modified with carbon nanotubes for electrochemical treatment of coking wastewater. Chemosphere 288, 132362 (2022).

    Article  CAS  Google Scholar 

  35. Z.K. Zhang, Z.Y. Wang, Y.F. Sun, S.S. Jiang, L. Shi, Q. Bi, and J.Q. Xue, Preparation of a novel Ni/Sb co-doped Ti/SnO2 electrode with carbon nanotubes as growth template by electrodeposition in a deep eutectic solvent. J. Electroanal. Chem. 911, 116225 (2022).

    Article  CAS  Google Scholar 

  36. G. de OSSantos, V.M. Vasconcelos, R.S. da Silva, M.A. Rodrigo, K.I.B. Eguiluz, and G.R. Salazar-Banda, New laser-based method for the synthesis of stable and active Ti/SnO2–Sb anodes. Electrochim. Acta 332, 135478 (2020).

    Article  Google Scholar 

  37. Y.Y. Chen, F.L. Li, X.C. Dong, D. Guo, Y.X. Huang, and S.P. Li, Construction of rGO@Ti/SnO2-Sb composite electrode for electrochemical degradation of fluoroquinolone antibiotic. J. Alloy. Compd. 869, 159258 (2021).

    Article  CAS  Google Scholar 

  38. X.B. Qian, K.F. Peng, L. Xu, S.Y. Tang, W.L. Wang, M. Zhang, and J.F. Niu, Electrochemical decomposition of PPCPs on hydrophobic Ti/SnO2-Sb/La-PbO2 anodes: relationship between surface hydrophobicity and decomposition performance. Chem. Eng. J. 429, 132309 (2022).

    Article  CAS  Google Scholar 

  39. S.S. Man, H.B. Bao, K. Xu, H.F. Yang, Q. Sun, L. Xu, W.J. Yang, Z.H. Mo, and X.M. Li, Preparation and characterization of Nd-Sb co-doped SnO2 nanoflower electrode by hydrothermal method for the degradation of norfloxacin. Chem. Eng. J. 417, 129266 (2021).

    Article  CAS  Google Scholar 

  40. A. Benvidi, M. Karimi, S.M. Bidoki, M.A.K. Zarchi, S. Dalirnasab, M.D. Tezerjani, and A. Behjat, Fabrication of several SnO2-based anodes for electrochemical ozone generation: comparison, characterization and application. Res. Chem. Intermed. 47, 4803–4824 (2021).

    Article  CAS  Google Scholar 

  41. M. Moradi, Y. Vasseghian, A. Khataee, M. Kobya, H. Arabzade, and E.-N. Dragoi, Service life and stability of electrodes applied in electrochemical advanced oxidation processes: a comprehensive review. J. Ind. Eng. Chem. 87, 18–39 (2020).

    Article  CAS  Google Scholar 

  42. G.O.S. Santos, A.R. Doria, V.M. Vasconcelos, C. Saez, M.A. Rodrigo, K.I.B. Eguiluz, and G.R. Salazar-Banda, Enhancement of wastewater treatment using novel laser-made Ti/SnO2-Sb anodes with improved electrocatalytic properties. Chemosphere 259, 127475 (2020).

    Article  CAS  Google Scholar 

  43. Q. Wang, T. Jin, Z. Hu, L. Zhou, and M. Zhou, TiO2-NTs/SnO2-Sb anode for efficient electrocatalytic degradation of organic pollutants: effect of TiO2-NTs architecture. Sep. Purif. Technol. 102, 180–186 (2013).

    Article  CAS  Google Scholar 

  44. Z.Y. Hu, C. Guo, P. Wang, R. Guo, X.W. Liu, and Y. Tian, Electrochemical degradation of methylene blue by Pb modified porous SnO2 anode. Chemosphere 305, 135447 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (no. 21676146) and the Financial Foundation of the State Key Laboratory of Materials-Oriented Chemical Engineering (no. ZK202009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, M., Hu, B., Ge, S. et al. Fabrication of Ti/TiO2/SnO2-Sb-Ir/SnO2-Sb-Ni Using Three Kinds of TiO2 Interlayer and an Optimized TiO2-Nanotube Interlayer-Based Anode for Electrochemical Treatment of Wastewater. J. Electron. Mater. 52, 907–916 (2023). https://doi.org/10.1007/s11664-022-10070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10070-6

Keywords

Navigation