Skip to main content
Log in

Infinite-Melt Vertical Liquid-Phase Epitaxy of HgCdTe from Hg Solution: from VLWIR to SWIR

  • 2021 U.S. Workshop on Physics and Chemistry of II-VI Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Liquid-phase epitaxy (LPE) is a material growth technology used in the fabrication of mercury cadmium telluride (HgCdTe) infrared (IR) detectors, which has historically been the highest performing solution in the IR community. This paper presents the most successful LPE technology, the “infinite-melt” vertical liquid-phase epitaxy (VLPE) from Hg-rich solutions, its current state, and the evolution of this technology. The high throughput and high yield inherent in the VLPE growth process has made it possible for producing high-performance second-generation focal plane arrays to meet a variety of requirement needs. Photodiode structures with excellent performance obtained from all wavelength band regions (VLWIR, LWIR, MWIR, SWIR), including p-on-n as well as n-on-p double-layer heterojunctions (DLHJ), have been manufactured using VLPE. We determined that defects in LPE layers can arise from a variety of sources, including the substrate or debris in the melt, which are extremely problematic to eliminate, incorrect Te composition, incorrect Cd composition, poor substrate prep, and poor decant step. After defining the most significant problems, solutions were implemented. The continuous improvement of VLPE results in better uniformity, reduced noise, and competitive die size, compared to other long-wave (LW) 2nd-generation detectors. This effort concludes with a discussion of several applications of the VLPE technology demonstrated on advanced high-performance device structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.F. Vilela, S.F. Harris, R.E. Kvaas, A.A. Buell, M.D. Newton, K.R. Olsson, D.D. Lofgreen, and S.M. Johnson, Flexibility of p–n Junction Formation from SWIR to LWIR Using MBE-Grown Hg (1–x) Cd x Te on Si Substrates. J. Electron. Mater. J. Electr. Mater. 38, 1755–1763 (2009).

    Article  CAS  Google Scholar 

  2. M.F. Vilela, A.A. Buell, M.D. Newton, G.M. Venzor, A.C. Childs, J.M. Peterson, J.J. Franklin, R.E. Bornfreund, W.A. Radford, and S.M. Johnson, Control and Growth of Middle Wave Infrared (MWIR) Hg (1–x) CdxTe on Si by Molecular Beam Epitaxy. J. Electron. Mater. 34, 898 (2005).

    Article  CAS  Google Scholar 

  3. M. Reddy, F. Torres, J. D. Benson, B. Pinkie, M. Seas, G. M. Venzor, J M. Peterson, X. Jin, K. Doyle, A. Hampp, J. A. Arias, A. E. Brown and S. M. Johnson, “Multi-Wafer Growth Simultaneously on Four 6 × 6 cm CdZnTe Substrates for Step Increase in MBE HgCdTe Wafer Production”, J. Electron. Mater. This edition

  4. M.F. Vilela, G.K. Pribil, K.R. Olsson, and D.D. Lofgreen, HgCdTe Molecular Beam Epitaxy Growth Temperature Calibration Using Spectroscopic Ellipsometry. J. Electron. Mater 41, 2937 (2012).

    Article  CAS  Google Scholar 

  5. C.C. Wang, S.H. Shin, M. Chu, M. Lanir, and A.H.B. Vanderwyck, Liquid Phase Growth of HgCdTe Epitaxial Layers. J. Electrochem. Soc. 127, 175 (1980).

    Article  CAS  Google Scholar 

  6. D.D. Edwall, E.R. Gertner, and W.E. Tennant, Liquid Phase Epitaxial Growth of Large Area Hg1−xCdxTe Epitaxial Layers. J. Appl. Phys. 55, 1453 (1984).

    Article  CAS  Google Scholar 

  7. J.E. Bowers, J.L. Schmit, C.J. Speerschneider, and R.B. Maciolek, Comparison of Layer Growth from Te-, Hg-, and HgTe-Rich Solutions. IEEE Trans. Electron Devices ED. 27, 24 (1980).

    Article  Google Scholar 

  8. Y. Nemirovosky, S. Margalit, E. Finkman, Y. Shacham-Diamand, and I. Kidron, Growth and Properties of Hg1-x CdxTe Epitaxial Layers. J. Electron. Mater 11, 133 (1982).

    Article  Google Scholar 

  9. J.C. Tranchart, B. Latorre, C. Foucher, and Y. Le Gouge, LPE Growth of Hg 1-xCd xTe on Cd1- yZnyTe Substrates. J. Crystal Growth 72, 468 (1985).

    Article  CAS  Google Scholar 

  10. J.K. Radhakrishnan, S. Sitharaman, and S.C. Gupta, Liquid Phase Epitaxial Growth of HgCdTe Using a Modified Horizontal Slider. J. Crystal Growth 252, 79 (2003).

    Article  CAS  Google Scholar 

  11. S. Bernardi, New Developments in the Liquid-Phase Epitaxy of Hgl- xCdxTe. Mater. Sci. Eng., B 28, 21 (1994).

    Article  CAS  Google Scholar 

  12. T. Tung, Infinite-Melt Vertical Liquid-Phase Epitaxy of HgCdTe from Hg Solution: Status and Prospects. J. Crystal Growth 86, 161 (1988).

    Article  CAS  Google Scholar 

  13. T. Tung, L.V. DeArmond, R.F. Herald, P.E. Herning, M.H. Kalisher, D.A. Olson, R.F. Risser, A. Stevens, and S.J. Tighe, State of the Art of Hg-Melt LPE HgCdTe at Santa Barbara Research Center. SPIE 1735, 109 (1992).

    CAS  Google Scholar 

  14. M.H. Kalisher, P.E. Herning, and T. Tung, Hg-rich Liquid-Phase Epitaxy of Hg1-xCdxTe. Prog. Crystal Growth Charact. 29, 41 (1994).

    Article  CAS  Google Scholar 

  15. Z. Tsybrii, Y. Bezsmolnyy, K. Svezhentsova, M. Vuichyk, I. Lysiuk, M. Apatska, M. Smolii, N. Dmytruk, S. Bunchuk, K. Andreeva, and F. Sizov, HgCdTe/CdZnTe LPE Epitaxial Layers: from Material Growth to Applications in Devices. J. Crystal Growth 529, 125295 (2020).

    Article  CAS  Google Scholar 

  16. A. Weber; W. Belzner; L.-D. Haas; S. Hanna; K. Hofmann; A. Neef; M. Reder; P. Stifter; J. Wendler; J. Ziegler; H.-P. Nothaft, Radiation Hardness of Two-dimensional Focal Plane Detector Arrays for LWIR/VLWIR Space Sounding Missions, 12th European Conference on Radiation and Its Effects on Components and Systems, 336, (2011). https://doi.org/10.1109/RADECS.2011.6131408..

  17. G.D. Jenkins, C.P. Morath, and V.M. Cowan, Empirical Study of the Disparity in Radiation Tolerance of the Minority-Carrier Lifetime Between II–VI and III–V MWIR Detector Technologies for Space Applications. J. Electron. Mater 46, 5405 (2017).

    Article  CAS  Google Scholar 

  18. X. Sun, J.B. Abshire, J.M. Lauenstein, W. Sullivan III., J. Beck, and J.E. Hubbs, Evaluation of Space Radiation Effects on HgCdTe Avalanche Photodiode Arrays for Lidar Applications. Infrared Technol. Appl. XLIV. 10624, 91–102 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro F. Vilela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilela, M.F., Hogan, J., Fennell, B.T. et al. Infinite-Melt Vertical Liquid-Phase Epitaxy of HgCdTe from Hg Solution: from VLWIR to SWIR. J. Electron. Mater. 51, 4731–4741 (2022). https://doi.org/10.1007/s11664-022-09810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09810-5

Keywords

Navigation